Innovative Application of Onion Extract to Improve the Quality of Tomato Fruit
Main Article Content
Abstract
Tomatoes are one of the daily necessities for people. In general, consumers favor tomatoes with few seeds. Therefore, there must be efforts made to improve the quality of tomatoes, one of which is to reduce the number of seeds, even if it is possible to make tomatoes without seeds (seedlessness). By applying Gibberellic acid (GA) during the growth phase of tomato plants, it is possible to enhance tomato quality through technology. The application of GA to certain plants can reduce the number of tomato seeds and increase their sweetness. It is necessary to discover a way to use GA-containing natural ingredients to prepare for the high cost of synthetic GA. Onions are one of the natural ingredients that contain GA. Thus, this study aimed to examine the effect of applying onion extract as a source of GA to obtain the optimum concentration of onion extract that can improve the quality of tomato fruit. The experimental design utilized Randomized-Group Design with five different treatments: no spraying, spraying with 25%, 50%, 75%, and 100% onion extract. According to the findings, the application of onion extract improved the quality of tomato fruit. This condition is reflected by a decrease in the number and weight of seeds per fruit and an increase in the fruit's vitamin C content. Therefore, it is essential to conduct this research to produce inexpensive, high-quality tomatoes to sustain the economy and increase farmers' income
Downloads
Article Details
References
Artha, I. K. R. W., Wiguna, A. A. G. S., Lestari, N. L. A. A., Kristina, N. P. D., Sugihartha, I. W., & Mardana, I. B. P. (2022). Pengembangan Sentra Pertanian Tomat Dengan Sistem Polikultur Hortikultura Berteknologi Digital Di Desa Pinggan, Kintamani. Proceeding Senadimas Undiksha, 997–1003.
Batt, P. J., & Parining, N. (2000). Price-quality relationships in the fresh produce industry in Bali. International Food and Agribusiness Management Review, 3(2), 177–187. https://doi.org/10.1016/s1096-7508(00)00034-3
Binenbaum, J., Weinstain, R., & Shani, E. (2018). Gibberellin Localization and Transport in Plants. Trends in Plant Science, 23(5), 410–421. https://doi.org/10.1016/j.tplants.2018.02.005
Chen, S., Wang, X., Zhang, L., Lin, S., Liu, D., Wang, Q., Cai, S., El-Tanbouly, R., Gan, L., Wu, H., & Li, Y. (2016). Identification and characterization of tomato gibberellin 2-oxidases (GA2oxs) and effects of fruit-specific SlGA2ox1 overexpression on fruit and seed growth and development. Horticulture Research, 3, 1–9. https://doi.org/10.1038/hortres.2016.59
Gultom, T., & Silitonga, D. Y. (2018). Effect of hormones gibberelin (Ga3) to produce parthenocarpy fruit on tomato tree (Solanum Betaceum, Cav). IOP Conference Series: Materials Science and Engineering, 420(1). https://doi.org/10.1088/1757-899X/420/1/012074
Handrian, R. G., Meiriani, & Haryati. (2013). Peningkatan Kadar Vitamin C Buah Tomat (Lycopersicum esculentum MILL.) Dataran Rendah Dengan Pemberian Hormon GA3. Jurnal Online Agroekoteknologi, 2(1), 333–339.
Jakhar, D., Thaneshwari, Nain, S., & Jakhar, N. (2018). Effect of Plant Growth Regulator on Growth, Yield & Quality of Tomato (Solanum lycopericum) Cultivar ‘Shivaji’ under Punjab Condition. International Journal of Current Microbiology and Applied Sciences, 7(06), 2630–2636. https://doi.org/10.20546/ijcmas.2018.706.311
Jha, R. K., Thapa, R., & Shrestha, A. K. (2022). Effect of GA3 and NAA on tomato production under protected cultivation in Kaski, Nepal. Journal of Agriculture and Food Research, 10(May), 100450. https://doi.org/10.1016/j.jafr.2022.100450
Kumar, S., Singh, R., Singh, V., Singh, M. K., & Singh, A. K. (2018). Effect of plant growth regulators on growth, flowering, yield and quality of tomato (Solanum lycopersicum L.). Journal of Pharmacognosy and Phytochemistry, 7(1), 41–44. https://doi.org/10.5958/2394-448x.2021.00013.4
Martins, A. O., Omena-Garcia, R. P., Oliveira, F. S., Silva, W. A., Hajirezaei, M. R., Vallarino, J. G., Ribeiro, D. M., Fernie, A. R., Nunes-Nesi, A., & Araújo, W. L. (2018). Differential root and shoot responses in the metabolism of tomato plants exhibiting reduced levels of gibberellin. Environmental and Experimental Botany, 157, 331–343. https://doi.org/10.1016/j.envexpbot.2018.10.036
Niu, S., He, Y., Yan, S., Sun, Z., Cai, R., & Zhang, Y. (2023). Histological, transcriptomic, and gene functional analyses reveal the regulatory events underlying gibberellin-induced parthenocarpy in tomato. Horticultural Plant Journal. https://doi.org/10.1016/j.hpj.2023.01.002
Ogugua, U. V., Kanu, S. A., & Ntushelo, K. (2022). Gibberellic acid improves growth and reduces heavy metal accumulation: A case study in tomato (Solanum lycopersicum L.) seedlings exposed to acid mine water. Heliyon, 8(12), e12399. https://doi.org/10.1016/j.heliyon.2022.e12399
Pramanik, K., Pradhan, J., & Sahoo, S. K. (2018). Role of Auxin on Growth, Yield and Quality of Tomato - A Review. The Pharma Innovation Journal, 7(9), 301–305. https://doi.org/10.20546/ijcmas.2017.611.195
Rahman, M., Nahar, M., Sahariar, M., & Karim, M. (2015). Plant growth regulators promote growth and yield of summer tomato (lycopersicone sculentum Mill.). Progressive Agriculture, 26(1), 32–37. https://doi.org/10.3329/pa.v26i1.24512
Raja, K., & Rani, M. S. A. (2021). Influence of gibberellic acid on seedlessness in jamun (Syzygium cumini L. Skeels). Current Science, 121(12), 1619–1622. https://doi.org/10.18520/cs/v121/i12/1619-1622
Salisbury, F. B., & Ross, C. W. (1995). Fisiologi Tumbuhan Jilid 3 Terjemahan : Diah R Lukman; Sumaryono. ITB.
Serrani, J. C., Fos, M., Atarés, A., & García-Martínez, J. L. (2007). Effect of gibberellin and auxin on parthenocarpic fruit growth induction in the cv Micro-Tom of tomato. Journal of Plant Growth Regulation, 26(3), 211–221. https://doi.org/10.1007/s00344-007-9014-7
Setiawan, A. B., Murti, R. H., & Purwantoro, A. (2016). Seedlessness and Fruit Quality Traits of Gibberellin Induced Parthenocarpic Fruit in Seven Tomato Genotypes (Solanum lycopersicum L.). Journal of Agricultural Science, 8(4), 84. https://doi.org/10.5539/jas.v8n4p84
Sharif, R., Su, L., Chen, X., & Qi, X. (2022). Hormonal interactions underlying parthenocarpic fruit formation in horticultural crops. Horticultural Research, 9(uhab024), 1–18.
Shohat, H., Eliaz, N. I., & Weiss, D. (2021). Gibberellin in tomato: metabolism, signaling and role in drought responses. Molecular Horticulture, 1(1), 1–12. https://doi.org/10.1186/s43897-021-00019-4
Silva, A. L. L. Da, Rodrigues, C., Costa, J. D. L., Machado, M. P., Penha, R. D. O., Biasi, L. A., Vandenberghe, L. P. D. S., & Socco, A. C. R. (2013). Gibberellic acid fermented extract obtained by solid-state fermentation using citric pulp by Fusarium moniliforme: Influence on Lavandula angustifolia mill, cultivated in vitro. Pakistan Journal of Botany, 45(6), 2057–2064.
Surya, I. B. K. (2007). Strategi Pemberdayaan Usaha Kecil dan Menengah Sektor Pertanian dalam Mendukung Sektor Pariwisata di Provinsi Bali. SOCA: Jurnal Sosial Ekonomi Pertanian, 7(1), 17–30.
Tchedry, V. (2020). Transition of agroecology in Bali, Indonesia. https://stud.epsilon.slu.se/16238/
Tilahun, S., Park, D. S., Seo, M. H., & Jeong, C. S. (2017). Review on factors affecting the quality and antioxidant properties of tomatoes. African Journal of Biotechnology, 16(32), 1678–1687. https://doi.org/10.5897/ajb2017.16054
Tiwari, A. K., & Singh, D. K. (2014). Use of Plant Growth Regulators in Tomato (Solanum lycopersicum L.) under Tarai Conditions of Uttarkhand. Indian Journal of Hill Farming, 27(2), 3–6.
Wirata, G. (2022). Strategi Peningkatan Ketahanan Pangan pada Masa Pandemi COVID-19 melalui Penguatan Kearifan Lokal Di Kabupaten Badung Bali. Jurnal Kajian Bali (Journal of Bali Studies), 12(1), 69. https://doi.org/10.24843/jkb.2022.v12.i01.p04
Zain, A. R., Basri, Z., & Lapanjang, I. (2015). Pembentukan Buah Terung ( Solanum melongena L.) Partenokarpi Melalui Aplikasi Berbagai Konsentrasi Giberelin. Jurnal Sains Dan Teknologi Tadulako, 4(2), 60–67.