Metoda Autoregressive untuk Peramalan Jangka Panjang

  • Ria Faulina STKIP PGRI Bangkalan

Abstract

Changes in seasonal patterns in Indonesia are closely related to rainfall. Various forecasting techniques were developed to produce better accuracy. In this study ARIMA linear forecasting techniques were used. The data used is secondary data from BMKG Kalianget Station, Sumenep from January 2008 - December 2017 with a monthly rainfall research variable. To measure the accuracy of the forecast results used by RMSE.From the result of this study, ARIMA ([1,6],0,0)(0,1,1)12providing better accuracy than ARIMA (1,0,0)(0,1,1)12 for predicting the next 1 month or 12 months (a year ahead).

Downloads

Download data is not yet available.

Author Biography

Ria Faulina, STKIP PGRI Bangkalan

STKIP PGRIĀ  Bangkalan

Published
2019-02-07
How to Cite
FAULINA, Ria. Metoda Autoregressive untuk Peramalan Jangka Panjang. Jurnal Matematika, [S.l.], v. 8, n. 2, p. 121-125, feb. 2019. ISSN 2655-0016. Available at: <https://ojs.unud.ac.id/index.php/jmat/article/view/46659>. Date accessed: 04 nov. 2024. doi: https://doi.org/10.24843/JMAT.2018.v08.i02.p104.
Section
Articles