Inventarisasi Kerentanan Longsor dengan Citra Landsat 8 OLI TIRS di Lereng Timur Gunung Agung

  • Petrus Raki Jananuraga Program Studi Agroekoteknologi Fakultas Pertanian, Universitas Udayana, Jl. PB. Sudirman Denpasar, 80234, Bali, Indonesia
  • R. Suyarto Program Studi Agroekoteknologi Fakultas Pertanian, Universitas Udayana, Jl. PB. Sudirman Denpasar, 80234, Bali, Indonesia
  • Tati Budi Kusmiyarti Program Studi Agroekoteknologi Fakultas Pertanian, Universitas Udayana, Jl. PB. Sudirman Denpasar, 80234, Bali, Indonesia

Abstract

Landslide Vulnerability Inventory with Landsat 8 OLI TIRS Imagery on the Eastern Slope of Mount Agung. Landslides are one of the natural disasters that often occur in Indonesia and cause loss of life, property, and damage to facilities and infrastructure. Landslide vulnerability on the eastern slope of Mount Agung is categorized as medium to high, making the area very vulnerable to landslides, therefore an inventory of landslide vulnerability in the area is needed. This study aims to analyze the results of land cover interpretation using BSI vegetation index approach and supervised classification on the eastern slope of Mount Agung, Bali, compare the results of land cover accuracy test of BSI vegetation index approach interpretation and supervised classification, and analyze landslide vulnerability from 2013 to 2022. The method used in this research is qualitative by utilizing data taken from Landsat 8 OLI TIRS images recorded from 2013 to 2022 in the form of Blue band, Red band, Near Infrared band, and Shortwave Infrared 2 band. Land cover classification uses Bare Soil Index vegetation index analysis and supervised classification. The results showed that the comparison of the area of non-vegetated land distribution for each year of the Bare Soil Index analysis results was greater than the results of the analysis using supervised classification. The highest non-vegetated land area based on the results of the Bare Soil Index was in 2019 with an area of 11,469.60 ha, while the supervised classification occurred in 2017 with an area of 6,182.03 ha. The accuracy test results show that the BSI method is more accurate (82.86%) compared to the supervised classification method (62.86%). Non-vegetated land (vacant land) based on BSI that is included in the Movement Vulnerability Zone is an area vulnerable to landslides, its distribution changes due to various events that occur in the area such as forest fires, landslides, land use change, and others. The highest vulnerability area was in 2019 amounting to 1,779.03 ha while the lowest vulnerability area was in 2016 amounting to 1028.94 ha.

Downloads

Download data is not yet available.

References

Arsyad, S. (1989). Konservasi Tanah dan Air. Bogor. Institut Pertanian Bogor. 225 p.
Andrian, S., & Marpaung, P. (2014. Pengaruh Ketinggian Tempat dan Kemiringan Lereng terhadap Produksi Karet Hevea brasiliensis Muell. Arg. di Kebun Hapesong PTPN III Tapanuli Selatan. E-Journal Agroekoteknologi, 2(3): 981-989.
Bisnis.com. (2014). Kemarau Panjang, 11 Kecamatan di Bali Kekeringan. https://m.bisnis.com/amp/read/20141102/78/269716/kemaran-panjang-11-kecamatan-di-bali-kekeringan.
Detiknews. (2018). Gunung Agung Meletus, Lava Terlontar 2 Km dan Membakar Hutan https://news.detik.com/berita/d-4094922/gunung-agung-meletus-lava-terlontar-2-km-dan-membakar-hutan.
Infografis Kejadian Bencana Indonesia Tahun (2022). 2023. https://bnpb.go.id/infografis/infografis-bencana-tahun-2022.
Kompas.com. (2018). Kebakaran Landa Lereng Gunung Agung. https://regional.kompas.com/read/2018/10/25/12204351/kebakaran-landa-lereng-gunung-agung.
Kompas.com. (2019). Kebakaran di Lereng Gunung Agung Terus Meluas. https://regional.kompas.com/read/2019/08/29/07035321/kebakaran-di-lereng-gunung-agung-terus-meluas.
Liputan6.com. (2019). Lereng Gunung Agung Kebakaran Lagi. https://www.liputan6.com/regional/read/4079061/lereng-gunung-agung-kebakaran-lagi.
Nguyen, C. T., Amnat C., Phan Kieu D., and Lian-Zhi H. (2021). A Modified Bare Soil Index to Identify Bare Land Features during Agricultural Fallow-Period in Southeast Asia Using Landsat 8. Land, 10(3): 231.
Oceanic Niño Index (ONI). (2023). Equatorial Pacific Sea Surface Temperatures (SST) | El Niño/Southern Oscillation (ENSO) | National Centers for Environmental Information (NCEI) (noaa.gov) https://www.ncei.noaa.gov/access/monitoring/enso/sst.
Prayogo, R. (2014). Potensi bahaya lahan longsor landslide pada Sub DAS Bruni di lereng Gunung Wilis Kabupaten Kediri. Pendidikan Geografi FIS Unesa, 3(1): 72-73.
Rikimaru, A., Roy, P.S., Miyatake, S. (2002). Tropical Forest Cover Density Mapping. Tropical Ecology, 42(2): 39-47.
Safitri, S. (2015). El Nino, La Nina dan Dampaknya Terhadap Kehidupan di Indonesia. Jurnal Criksetra, 4(8): 153-156.
Sartohadi, J. (2008). The Landslide Distribution in Loano Sub-District, Purworejo District, Central Java Province, Indonesia. Forum Geografi, 22(2): 129-144.
Surono. (2003). Potensi Bencana Geologi di Kabupaten Garut. Prosiding Semiloka Mitigasi Bencana Longsor di Kabupaten Garut. Pemerintah Kabupaten Garut.
Syaidah, N. (2020). Analisis Karakteristik Longsor lahan Studi Kasus Ruas Jalan Jamin Ginting km 29-58 Sibolangit-Berastagi. Skripsi Sarjana. Program Sarjana Universitas Medan. Medan, 56 p.
Wang, Z., Xu, L., Ji, Q., Song, W., dan Wang, L. (2020). A Multi Level Non Uniform Spatial Sampling Method for Accuracy Assessment of Remote Sensing Image Classification Results. Apply Science, 10: 5568.
Published
2024-05-30
How to Cite
JANANURAGA, Petrus Raki; SUYARTO, R.; KUSMIYARTI, Tati Budi. Inventarisasi Kerentanan Longsor dengan Citra Landsat 8 OLI TIRS di Lereng Timur Gunung Agung. Agrotrop : Journal on Agriculture Science, [S.l.], v. 14, n. 2, p. 180-189, may 2024. ISSN 2654-4008. Available at: <https://ojs.unud.ac.id/index.php/agrotrop/article/view/117964>. Date accessed: 21 nov. 2024. doi: https://doi.org/10.24843/AJoAS.2024.v14.i02.p04.
Section
Articles