Pengaruh Konsentrasi Natrium Hidroksida terhadap Karakteristik Selulosa Mikrobia dari SCOBY
Abstract
Microbial cellulose is cellulose produced from a fermentation process involving bacteria and yeast, which has excellent potential as an alternative raw material to replace synthetic fibers. This research aims to determine the effect of NaOH on the characteristics of microbial cellulose and determine the concentration of NaOH that produces the best characteristics of microbial cellulose. This research used a randomized block design with varying treatment concentrations of NaOH consisting of 6 levels, namely (0%, 5%, 10%, 15%, 20%, and 25% w/v). Each treatment was grouped into three based on the microbial cellulose production time, so 18 experimental units were obtained. The variables observed were thickness, tensile strength, elongation at break, elasticity, and thickness expansion. The data obtained was analyzed for diversity and continued with the Least Significant Difference Test. The research results showed that the concentration of NaOH significantly affected the tensile strength, elongation at break, elasticity and swelling but had no significant effect on the thickness of microbial cellulose. NaOH concentration of 15% (w/v) produces the best characteristics of microbial cellulose with a tensile strength value of 39.63 ± 1.33 MPa; elongation at break is 6.43 ± 0.35%; elasticity is 607.98 ± 26.26 Mpa and thickness expansion is 126.19 ± 2.06%.
Downloads
References
Alfarisi, C. D., Zahrina, I., & Mutamima, A. (2021). Pembuatan nata de cassava dari limbah cair tapioka dengan menggunakan sumber nitrogen alami yang berbeda, 17(2), 93–100.
Arnata, I W., Harsojuwono, B. A., Hartiati, A., Anggreni, A. A. M. D., & Sartika, D. (2022). Effect of alkaline concentration treatments on the chemical, physical, and thermal characteristics of cellulose from tapioca solid waste. Journal of Fibers and Polymer Composites, 1(2), 117–130.
Coelho, R. M. D., Almeida, A. L. de, Amaral, R. Q. G. do, Mota, R. N. da, & Sousa, P. H. M. d. (2020). Kombucha: Review. International Journal of Gastronomy and Food Science, 22(July), 100272. Elsevier B.V. Retrieved from https://doi.org/10.1016/j.ijgfs.2020.100272
Crops, B. (2015). Potensi in-vivo selulosa bakterial sebagai nano-filler karet Elastmosfer Thermoplastics ( ETPS ), 14(2), 103–112.
Czaja, W., Romanovicz, D., & Brown, R. malcolm. (2004). Structural investigations of microbial cellulose produced in stationary and agitated culture. Cellulose, 11(3/4), 403–411.
Darni, Y., & Utami, H. (2010). Studi pembuatan dan karakteristik sifat mekanik dan hidrofobisitas bioplastik dari pati sorgum. Jurnal Rekayasa Kimia dan Lingkungan, Vol. 7(No. 4), 190–195.
Diharjo, K. (2008). Pengaruh perlakuan alkali terhadap sifat tarik bahan komposit. 8 Jurusan Teknik Mesin, Fakultas Teknologi Industri, Universitas Kristen Petra.
El-Saied, H., Basta, A. H., & Gobran, R. H. (2004). Research progress in friendly environmental technology for the production of cellulose products (Bacterial cellulose and its application). Polymer - Plastics Technology and Engineering, 43(3), 797–820.
Faruk, O., Bledzki, A. K., Fink, H. P., & Sain, M. (2012). Biocomposites reinforced with natural fibers: 2000-2010. Progress in Polymer Science, 37(11), 1552–1596. Elsevier Ltd. Retrieved from http://dx.doi.org/10.1016/j.progpolymsci.2012.04.003
Felasih, E. (2010). Pemanfaatan Selulosa Bakteri - Polivinil Alkohol ( Pva ) Hasil Iradiasi ( Hidrogel ) sebagai Matriks Topeng Masker Wajah, 4. Retrieved from https://repository.uinjkt.ac.id/dspace/handle/123456789/2414
Gustian, I., Sutanto, T. D., & Adfa, M. (2006). Efek perendaman larutan alkali terhadap prilaku film kertas dari nata de coco yang dimodifikasi. jurnal G, 2(1), 126–129.
Hasyim, U. H., Yansah, N. A., & Nuris, M. F. (2018). Sebagai matriks komposit serat alam dengan perbandingan alkalisasi Naoh dan KOH. E - Journal UMJ, 015(3), 1–7.
Herlina S., N., Wardana, I. N. G., Irawan, Y. S., & Siswanto, E. (2018). Characterization of the Chemical, Physical, and Mechanical Properties of NaOH-treated Natural Cellulosic Fibers from Corn Husks. Journal of Natural Fibers, 15(4), 545–558. Taylor & Francis. Retrieved from https://doi.org/10.1080/15440478.2017.1349707
Jawaid, M., Abdul Khalil, H. P. S., Hassan, A., Dungani, R., & Hadiyane, A. (2013). Effect of jute fibre loading on tensile and dynamic mechanical properties of oil palm epoxy composites. Composites Part B: Engineering, 45(1), 619–624. Elsevier Ltd. Retrieved from http://dx.doi.org/10.1016/j.compositesb.2012.04.068
Khamidah, A., & Antarlina, S. S. (2020). Opportunities of kombucha drinking as a functional Food. Jurnal Ilmu-Ilmu Pertanian, 14(2), 184–200.
Klemm, D., Schumann, D., Kramer, F., Heßler, N., Hornung, M., Schmauder, H. P., & Marsch, S. (2006). Nanocelluloses as innovative polymers in research and application. Advances in Polymer Science, 205(1), 49–96.
Lailyningtyas, D. I., Lutfi, M., & Ahmad, A. M. (2020). Uji mekanik bioplastik berbahan pati umbi ganyong (Canna edulis) dengan variasi selulosa asetat dan sorbitol. Jurnal Keteknikan Pertanian Tropis dan Biosistem, 8(1), 91–100.
Lavoine, N., Desloges, I., Dufresne, A., & Bras, J. (2012). Microfibrillated cellulose - Its barrier properties and applications in cellulosic materials: A review. Carbohydrate Polymers, 90(2), 735–764. Elsevier Ltd. Retrieved from http://dx.doi.org/10.1016/j.carbpol.2012.05.026
Miranda, B., Lawton, N. M., Tachibana, S. R., Swartz, N. A., & Hall, W. P. (2016). Titration and HPLC Characterization of Kombucha Fermentation: A Laboratory Experiment in Food Analysis. Journal of Chemical Education, 93(10), 1770–1775.
Mohamed, T., A. Gouadria, R. B., JF. Durastanti, & A. Mazioud. (2013). Study And optimization of palm wood mechanical properties by alkalazition of the natural fiber. International Journal of Sciences: Basic and Applied Research (IJSBAR), 11(1), 30–38. Retrieved from http://gssrr.org/index.php?journal=JournalOfBasicAndApplied&page=article&op=view&path%5B%5D=1095
Nurfajri, & Arwizet. (2019). Analisis kekuatan tarik komposit serabut kelapa dan ijuk dengan perlakuan alkali (NaOH). Journal of Multidicsiplinary Research and Development, 1(4), 791–797.
Pamela, V. Y., Syarief, R., Iriani, E. S., & Suyatma, N. E. (2017). Karakteristik mekanik, termal dan morfologi film polivinil alkohol dengan penambahan nanopartikel ZnO dan asam stearat untuk kemasan multilayer. Jurnal Penelitian Pascapanen Pertanian, 13(2), 63.
Primiani, C. N., Pujiati, Mumtahanah, M., & Ardhi, W. (2018). Kombucha fermentation test used for various types of herbal teas. Journal of Physics: Conference Series, 1025(1).
Rahayu, T., & Eli Rohaeti. (2014). Sifat mekanik selulosa bakteri dari air kelapa dengan penambahan kitosan. Penelitian Saintek, 19(1).
Rajeshkumar, G., Hariharan, V., & Scalici, T. (2016). Effect of NaOH treatment on properties of Phoenix Sp. Fiber. Journal of Natural Fibers, 13(6), 702–713. Taylor & Francis. Retrieved from http://dx.doi.org/10.1080/15440478.2015.1130005
Rohaeti, E & Rahayu, T. (2012). Sifat mekanik bacterial cellulose dengan media air kelapa dan gliserol sebagai material pemlastis, 3450.
Sanam, H. A., O. R. (2022). Analisis pengaruh iradiasi sinar gamma terhadap kekuatan tarik dan penyerapan air komposit polymer blend berpenguat serat bambu. Jurnal Pendidikan Teknik Mesin Undiksha, 10, 14–21. Retrieved from http://10.0.93.79/jptm.v10i2.51606
Senthamaraikannan, P., & Kathiresan, M. (2018). Characterization of raw and alkali treated new natural cellulosic fiber from Coccinia grandis.L. Carbohydrate Polymers, 186, 332–343. Elsevier Ltd. Retrieved from http://dx.doi.org/10.1016/j.carbpol.2018.01.072
Wahyudi, B., Bahrul, M., Kasafir, H., Rokhmat, M., & Hidayat, T. (2020). Sintesis dan karakterisasi bioplastik dari pati talas dengan selulosa tandan Kosong kelapa sawit. Seminar Nasional Teknik Kimia Soebardjo Brotohardjono XVI, 1(September), 1–12.
Yasa, I. W. S., Basuki, E., Saloko, S., & Handito, D. (2020). Sifat fisik dan mekanis Lembaran Kering Selulosa bakteri berbahan dasar limbah hasil pertanian. Jurnal Ilmiah Rekayasa Pertanian dan Biosistem, 8(1), 89–99.