PENERAPAN YOLOV5 DAN SORT DALAM DETEKSI KENDARAAN PADA PERSIMPANGAN BERSINYAL UNTUK PENYESUAIAN WAKTU LAMPU LALU LINTAS

Main Article Content

Ahmad Sulton Fauzul Arya Ramadhan Duman Care Khrisne Made Sudarma I Wayan Shandyasa

Abstract

The problems with traffic in many big cities is congestion. Detection and tracking of vehicles in traffic light queues is an important aspect of an efficient urban transport system. This research introduces a combined model that combines the YOLO (You Only Look Once) version 5 algorithm or commonly called YOLOv5, a high-speed object detection approach, with the SORT (Simple Online and Realtime Tracking) algorithm to efficiently detect and track vehicles. The method was tested using a dataset of real traffic recordings and the results showed excellent performance in detecting and tracking vehicles, with sufficient accuracy and speed for urban traffic applications. Using this approach, vehicle detection and tracking systems can improve traffic safety and optimize vehicle flow at road intersections.

Downloads

Download data is not yet available.

Article Details

How to Cite
SULTON, Ahmad et al. PENERAPAN YOLOV5 DAN SORT DALAM DETEKSI KENDARAAN PADA PERSIMPANGAN BERSINYAL UNTUK PENYESUAIAN WAKTU LAMPU LALU LINTAS. Jurnal SPEKTRUM, [S.l.], v. 11, n. 2, p. 113-124, june 2024. ISSN 2684-9186. Available at: <https://ojs.unud.ac.id/index.php/spektrum/article/view/117907>. Date accessed: 22 jan. 2025. doi: https://doi.org/10.24843/SPEKTRUM.2024.v11.i02.p12.
Section
Articles

Most read articles by the same author(s)

1 2 3 4 5 6 7 8 9 10 > >>