Forecasting of Paddy Grain and Rice's Price: An ARIMA (Autoregressive Integrated Moving Average) Model Application

Main Article Content

Fitri Ramadhani Ketut Sukiyono Melli Suryanty

Abstract

A decision making for a long-term paddy grain and rice price guidelines need a future price prediction and a forecasting model that made based on time progression. The most popular model used is ARIMA. The common problem in forecasting the paddy grain and rice in Indonesia using this model was choosing the best model which fit all type of forecasting. This study aimed to determine the most appropriate ARIMA Model and forecast paddy grain and rice’s price on the farmer level, wholesale level, and international level. The prediction began after the stationary test and the best model selection conducted. The ARIMA model used was chosen by the lowest AIC and SC accuracy value. ARIMA Model used in this study were grain price on the farmer level (1,1,2), grain price on the milling level (1,1,2), rice price on the wholesale level (1,1,3), and rice price on the international level (3,1,7). The rice price prediction in the next sixth months on the farmer level was IDR 5,905.15/kg and the actual price was IDR 5,524.89/kg, on the milling level was IDR 6,014.35/kg and the actual price was IDR 5,641/kg, on the wholesale level was IDR 12,163.92/kg and the actual price IDR 12,115/kg, while the on the international level was US$ 462,065/Ton and the actual price was US$ 408/Ton. This study concluded that the price list at a different level of the market was requiring a different model of ARIMA.

Downloads

Download data is not yet available.

Article Details

How to Cite
RAMADHANI, Fitri; SUKIYONO, Ketut; SURYANTY, Melli. Forecasting of Paddy Grain and Rice's Price: An ARIMA (Autoregressive Integrated Moving Average) Model Application. SOCA: Jurnal Sosial Ekonomi Pertanian, [S.l.], v. 14, n. 2, p. 224 - 239, may 2020. ISSN 2615-6628. Available at: <https://ojs.unud.ac.id/index.php/soca/article/view/60071>. Date accessed: 02 nov. 2024. doi: https://doi.org/10.24843/SOCA.2020.v14.i02.p04.
Section
Articles

References

Anokye, Martin., Francis T. Oduro, et al. 2014. Dynamics of Maize Price in Ghana: Linear versus Nonlinear Cobweb Models. Journal of Economics and Sustainable Development. 5(7): 8-13. Diakses dari https://www.iiste.org/Journals/index.php/JEDS/article/view/12557
Arısoy, Hasan & Zeki Bayramoğlu. 2017. Determination of the Effect of Price Fluctuations on Producer Income – the Case of Potatoes. Turkish Journal of Agriculture - Food Science and Technology. 5(11): 1342-1349. Diakses dari http://www.agrifoodscience.com/index.php/TURJAF/article/view/1356
Badan Pusat Statistik. 2016. https://www.bps.go.id/. Diakses pada tanggal 19 Desember 2018 pukul 22.00 WIB.
Brock W. A. & Hommes C. H. 1997. A rational route to randomness. Econometrica, 65 (5):1059–1095. DOI: 10.2307/2171879 Diakses dari https://www.jstor.org/stable/2171879
Cetin I, Esengün K. 2013. Amasya Ilinde Yaygin Olarak Yetistirilen Urunlerde Verim ve Fiyat Riski. KMÜ Sosyal ve Ekonomi̇k Arastirmalar Dergi̇si. 15 (25): 57-65, Karaman. Diakses dari http://dergi.kmu.edu.tr/userfiles/file/aralik2013/57-65.pdf
Dağıstan, Erdal., Tuğçe Kızıltuğ & Ahmet Duran Çelik. 2017. Reasons for Seasonal Potato Prıce Fluctuatıons in Turkey. Asian Journal of Agricultural Extension, Economics & Sociology. 18(3): 1-8. https://doi.org/10.9734/AJAEES/2017/34647
Ezekiel, M. 2013. The Cobweb Theorem. The Quarterly Journal of Economics. Vol. 52, No. 2 (Feb., 1938), pp. 255-280, Oxford University Press, Diakses dari http://www.jstor.org/stable/ 1881734.
Firdaus, M. 2011. Aplikasi Ekonometrika Untuk Data Panel dan Time Series. Edisi Revisi. PT Penerbit IPB Press: Bogor.
Gouel C. 2013. Optimal Food Price Stabilisation Policy. European Economic Review 57(2013)118–134.
Hadiansyah, F.N. 2017. Prediksi Harga Cabai dengan Pemodelan Time Series ARIMA. Journal on Computing. 2(1): 71-78.
IndexMundi.2018.https://www.indexmundi.com/Commodities/?commodity=rice&months=120. Diakses pada tanggal 10 Desember 2018 pukul 08.30 WIB.
ISSER, Institute of Statistic Social and Economic Research. 2008. State of the Ghanaian Economy University of Ghana-Legon.
Juanda, B. dan Junaidi. 2012. Ekonometrika Deret Waktu. PT Penerbit IPB Press: Bogor.
Makridakis Spyros, Wheel Wright Steven C, & Victor E, McGee. 1999. Metode dan Aplikasi Peramalan. Edisi Ke-2. Jakarta: Erlangga.
Mariska, Mega. 2016. Analisis Pengaruh Kebijakan Harga Pembelian Pemerintah Terhadap Permintaan Beras di Kabupaten/Kota Provinsi Lampung Tahun 2009-2013. Skripsi. Fakultas Ekonomi dan Bisnis. Universitas Lampung.
Naimzada, Ahmad. and Nicolò Pecora. 2016. Memory, market stability, and attractors coexistence in a nonlinear cobweb model. Journal of Difference Equations and Application. ISSN: 1023-6198 (Print) 1563-5120 (Online).
Novanda, R.R., Eko Sumartono, Putri S.Asriani, Ellys Yuliarti, Ketut Sukiyono., Basuki S.Priyono, Irnad, Reswita, Melly Suryanti, Vera Octavia. 2018. A Comparison of Various Forecasting Techniques for Coffee Prices. Journal of Physics: Conf. Series 1114 (2018) 012119.
Putri, Maria, C.K dan Wiwik Anggraeni. 2018. Penerapan Metode Campuran Autoregressive Integrated Moving Average dan Quantile Regression (ARIMA-QR) untuk Peramalan Harga Cabai Sebagai Komoditas Strategis Pertanian Indonesia. Jurnal Teknik ITS. 7(1): 132-137. Salwa, Nany, Nidya Tatsara, Ridha Amalia, & Aja Fatimah Zohra. 2018. Peramalan Harga Bitcoin Menggunakan Metode ARIMA (Autoregressive Integrated Moving Average). Journal of Data Analysis. 1(1): 21-31.
Sarkar A. 1992. On the Formation of Agricultural Prices. Journal of development economics 0304-3878/93/$06.00 0 1993-Elsevier Science Publishers B.V. All rights reserved, 41 (1993) 1-17. North-Holland.
Sena, D. dan Nagwani N.K. 2015. Application of Time Series Based Prediction Model to Forecast Per Capita Disposable Income. IEEE International Advance Computing Conference (IACC): 454-457. DOI: 10.1109/IADCC.2015.7154749.
Serra T, & Gil J.M. 2013. Price Volatility in Food Markets: Can Stock Building Mitigate Price Fluctuations? European Review of Agricultural Economics. 40 (3): 507–528. https://doi.org/10.1093/erae/jbs041
Sugiarto, S., Bustami, Rustam E. 2017. Penduga Model Arima Untuk Peramalan Harga Tbs Kelapa Sawit Di Propinsi Riau. Jurnal Sains, Teknologi dan Industri. 15(1): 35 - 40.
Sukiyono, K., Musriyadi Nabiu, Bambang Sumatri, R.R. Novanda, Nyayu N. Arianti, Sriyoto, M. M. Zulkarnain Yuliarso, Redy Badrudin, M. Mustopa Romdhon, H. Mustamam. 2018. Selecting an Accurate Cacao Price Forecasting Model. Journal of Physics: Conf. Series 1114 (2018) 01211.
Sukiyono, Ketut dan Rosdiana. 2018. Pendugaan Model Peramalan Harga Beras Pada Tingkat Grosir. Jurnal Agrisep. 17.1.23-30.
Web Definition, (2014). Cobweb Model. http://en.wikipedia.org/wiki/Cobweb model. assessed 11th February, 2014.
Wei, W. W. S. 2006. Time Series Analysis.Addison Wesley: New York.
White, B. & Dawson, P. J. 2005. Measuring Price Risk on UK Arable Farms. Journalof Agricultural Economics, 56 (2), 239-252