Query Suggestion on Drugs e-Dictionary Using the Levenshtein Distance Algorithm

  • Halimah Tus Sadiah Manajemen Informatika, Universitas Pakuan
  • Muhamad Saad Nurul Ishlah Manajemen Informatika, Universitas Pakuan
  • Nisa Najwa Rokhmah Farmasi, Universitas Pakuan

Abstract

Dictionary of medicine in the form of a thick book has many disadvantages, one of which is impractical. This is the reason for Indonesian developers to create drugs e-Dictionary. But the drugs e-Dictionary that has been developed is still in the form of a letter index so that users must search the terms one by one in sequential order. This has become so inefficient and ineffective that it is necessary to add a search function and query suggestion feature to the drug e-dictionary. The purpose of this study is to build a query suggestion facility on drugs e-Dictionary using the Levenshtein Distance algorithm. The stages of this research consist of the Development of web-based drugs e-Dictionary, Implementation of the Levenshtein Distance Algorithm, Query Suggestion Testing, and Usage. Based on the results of the implementation of the Levenshtein Distance algorithm and test results, Drugs e-Dictionary can evaluate words that are not in the database. The query suggestion function works by producing the closest word output contained in the database.

Downloads

Download data is not yet available.

References

[1] Departemen Kesehatan RI. Tanggung Jawab Apoteker Terhadap Keselamatan Pasien (Patient Safety ). Jakarta: Direktorat Bina Farmasi Komunitas Dan Klinik Ditjen Bina Kefarmasian Dan Alat Kesehatan Departemen Kesehatan RI. 2008.
[2] Y. Song, & Li-wei He. 2010. Optimal Rare Query Suggestion With Implicit User. ACM Journals.pp: 901-910.
[3] S. Jiang, S. Zilles, & R. Holte. 2008. Query suggestion by query search: a new approach to user support in web search [Online]. [Cited 2018 August 1]. Available from www.cs.uregina.ca/~zilles/jiangZH09.pdf
[4] Y. Song, D. Zhou., & L.W. He. 2011. Post-ranking-query-suggestion-by-diversifying-searchresul [Online]. [Cited 2018 August 1]. Available from https://www.microsoft.com/id-id/: https://www.microsoft.com/en-us/research/publication/post-ranking-query-suggestionbydiversifying-search-results/
[5] J.-M.Yangy, R. Cai, F. Jingz, S.Wangy, L. Zhangy, & W.Y.Ma. 2008. Search-based Query Suggestion.[Online] [Cited 2018 August 1]. Available from http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.159.3499&rep=rep1&type=pdf
[6] Q. Mei, D. Zhou & K Church 2008. Query Suggestion Using Hitting Time [Online]. [Cited 2018 August 1]. Available from https://www.microsoft.com/enus/ research/wpcontent/uploads/2017/01/sugg.pdf
[7] H. Cao, D. Jiang,J. Pei, Q. He, Z. Liao, E. Chen, & H. Li. 2008. Context-Aware Query Suggestion by Mining Click-Through [Online]. [Cited 2018 August 1]. Available from https://www.cs.sfu.ca/~jpei/publications/QuerySuggestion-KDD08.pdf
[8] Z.-J. Zha, L. Yang, T. Me., M. Wang, & Zengfu. Visual Query Suggestion. ACM Journals.
pp. 15-24. 2009.
[9] S. Bathia, D. Majumdar, & P. Mitra. Query Suggestions in the Absence of Query Logs. ACM Journals, pp. 1-10.2011.
[10] K.N. Ngafidin & H. Wibawanto. Implementasi Fitur Autocomplete dan Algoritma Levenshtein Distance untuk Meningkatkan Efektivitas Pencarian Kata di Kamus Besar Bahasa Indonesia (KBBI). Jurnal Teknik Elektro. Vol. 7, No. 1, pp.1-6. 2015
[11] R Pressman dan B.R. Maxim. Software Engineering a Practitioners approach. McGraw-Hill Education : New York. 2014.
[12] J Satzinger, R. Jackson, & S. Burd. System Analysis and Design in a changing World. USA: Course Technology Cengage Learning. 2010.
[13] Ikatan Apoteker Indonesia. ISO Informasi Spesialite Obat Indonesia. Vol 52. 2019. Jakarta : Isfi Penerbitan.2019
[14] Z.Afriansyah, D.Puspitaningrum, & Ernawati. Rancang Bangun Aplikasi Pencocokan DNA Manusia Menggunakan Algoritma Levenshtein Distance (Studi Kasus: Dna Kanker Hati Manusia). Jurnal Rekursif . Vol. 3, No. 2,pp. 61-67.2015.
[15] B. Pratama & S. Pamungkas, Analisis Kinerja Algoritma Levenshtein Distance Dalam Mendeteksi Kemiripan Dokumen Teks. Jurnal Log!k@ . Vol. 6, No. 2, pp. 131-143.2016
[16] T. Aprilianto, & A. Badawi. Sistem Koreksi Kata Dan Pengenalan Struktur Kalimat Berbahasa Indonesia Dengan Pendekatan Kamus Berbasis Levenshtein Distance. Jurnal SPIRIT. Vol. 9, No. 1, pp 48-61. 2017.
[17] R. Haldar, & D. Mukhopadhyay. 2011. Levenshtein Distance Technique in Dictionary Lookup Methods: An Improved Approach [Online]. [Cited 2018 August 1]. Available from
[18] R. Mishra, & N. Kaur. A Survey of Spelling Error Detection and Correction Techniques. International Journal of Computer Trends and Technology. Vol. 3, No. 4, pp. 372-374. 2013
[19] N. Ariyani, N., R. Sutardi, & Ramadhan. Aplikasi Pendeteksi Kemiripan Isi Teks Dokumen Menggunakan Metode Levenshtein Distance. semanTIK.Vol. 2, No. 1,pp. 279-286. 2016.
[20] M. Navin, Pankaja R. Performance Analysis of Text Classification Algorithms using Confusion Matrix. International Journal of Engineering and Technical Research (IJETR). Vol. 6, No. 2,pp. 75-78. 2016
Published
2019-12-30
How to Cite
SADIAH, Halimah Tus; SAAD NURUL ISHLAH, Muhamad; NAJWA ROKHMAH, Nisa. Query Suggestion on Drugs e-Dictionary Using the Levenshtein Distance Algorithm. Lontar Komputer : Jurnal Ilmiah Teknologi Informasi, [S.l.], p. 193-202, dec. 2019. ISSN 2541-5832. Available at: <https://ojs.unud.ac.id/index.php/lontar/article/view/53530>. Date accessed: 08 jan. 2025. doi: https://doi.org/10.24843/LKJITI.2019.v10.i03.p07.
Section
Articles