AUTOMATIC IMAGE ANNOTATION MENGGUNAKAN METODE BLOCK TRUNCATION DAN K-NEAREST NEIGHBOR
Abstract
Sistem temu kembali citra digital berbasis text sangat bergantung pada label dari gambar digital. Dalam penelitian ini, diterapkan gabungan beberapa metode untuk pelabelan sebuah gambar secara otomatis, istilah yang sering digunakan adalah automatic image annotation, teknik ini digunakan untuk menghasilkan label pada gambar agar dapat melakukan pencarian dengan semantik yang diambil dari objek dalam gambar. Automatic image annotation dimulai dengan melakukan segmentasi terhadap gambar dan untuk setiap segmen gambar dilakukan ekstraksi fitur warna dan tekstur, fitur ini dinormalisasi dan disimpan kedalam basis data untuk data latih, data latih yang telah terkumpul dilatih menggunakan metode learning vector quantization. Bobot yang didapat dari hasil pelatihan digunakan untuk melakukan klasifikasi terhadap segmen gambar ke kosa kata hasil terjemahannya. Hasil dari penelitian ini adalah kesimpulan bahwa automatic image annotation dapat dicapai dengan gabungan metode yang diusulkan dan dapat memberi performa hasil anotasi yang bagus, dimana akurasi sistem adalah 73,26 % saat menggunakan K-NN dengan k = 5.
Downloads
Keywords
The Authors submitting a manuscript do so on the understanding that if accepted for publication, the copyright of the article shall be assigned to Jurnal Lontar Komputer as the publisher of the journal. Copyright encompasses exclusive rights to reproduce and deliver the article in all forms and media, as well as translations. The reproduction of any part of this journal (printed or online) will be allowed only with written permission from Jurnal Lontar Komputer. The Editorial Board of Jurnal Lontar Komputer makes every effort to ensure that no wrong or misleading data, opinions, or statements be published in the journal.
This work is licensed under a Creative Commons Attribution 4.0 International License.