DATA MINING USING FUZZY METHOD FOR CUSTOMER RELATIONSHIP MANAGEMENT IN RETAIL INDUSTRY
Abstract
A problem that appears in a retail industry with a great quantity of customers is how to identify potential customers. A retail industry could identify their best customer through customer segmentation by applying data miningand customer relationship managementconcept. This paper presents data mining process from customer's data in retail company by combining fuzzy RFM model with fuzzy c-meansand fuzzy subtractive algorithm. The dataconsisted of 3.000.000 rows of transaction data from 2006 to 2010. The data transferred to 499 RFM data for each time period selected. Experiments tried two to six clusters by changing the value of cluster number (FCM) and radii(fuzzy subtractive). The clustering result will then be classified to determine customer segmentation using fuzzy RFM models. The modified partition coefficient and partition entropy indexes used to evaluate the performance of both clustering algorithm.The results indicate that FCM has a higher validity rate than fuzzy subtractive. Fuzzy RFM segmentationindicates that fuzzy subtractive can not form a cluster that are categorized as potential customers, therefore FCM is more appropriate for customer segmentation in retail industry.
Downloads
Keywords
The Authors submitting a manuscript do so on the understanding that if accepted for publication, the copyright of the article shall be assigned to Jurnal Lontar Komputer as the publisher of the journal. Copyright encompasses exclusive rights to reproduce and deliver the article in all forms and media, as well as translations. The reproduction of any part of this journal (printed or online) will be allowed only with written permission from Jurnal Lontar Komputer. The Editorial Board of Jurnal Lontar Komputer makes every effort to ensure that no wrong or misleading data, opinions, or statements be published in the journal.
This work is licensed under a Creative Commons Attribution 4.0 International License.