Implementation of Random Forest Method with Information Gain Selection and Hyperparameter Tuning for Alzheimer’s Disease Classification

  • Riska Nuril Fadhila UIN Sunan Ampel Surabaya
  • Nurissaidah Ulinnuha UIN Sunan Ampel Surabaya
  • Dian Yuliati

Abstract

Alzheimer's disease is one of the leading causes of decreased quality of life in the elderly aged 65 years and above. One of the problems facing Alzheimer's cases is the difficulty of making an early diagnosis to prevent disease progression, as early symptoms are often mistaken for senile dementia. Using the Random Forest method with information gain feature selection and hyperparameter tuning optimization, this study aims to determine the results of optimization with feature selection and hyperparameter tuning using Random Search and Grid Search to classify Alzheimer's medical record data consisting of 32 variables, including lifestyle factors, clinical measurements, cognitive and functional assessments, as well as symptoms that indicate Alzheimer's. The results showed that applying Information Gain and parameter optimization with the Grid Search method achieved the highest accuracy among all tested experiments. Random Forest with Information Gain and Grid Search gave an accuracy of 95.57%, sensitivity of 92.93%, and specificity of 96.99%, which showed better performance than the Random Search method. This indicates that parameter optimization has a vital role in improving model performance. This research contributes to assisting paramedics in determining whether a patient has Alzheimer's disease based on the characteristics derived from the data.

Downloads

Download data is not yet available.

References

[1] B. I. Nabila, W. E. Kurniawan, and M. Maryoto, “Gambaran Tingkat Demensia Pada Lansia Di Rojinhome Ikedaen Okinawa Jepang,” Jurnal Studi Keperawatan, vol. 3, no. 2, pp. 1–8, 2022, doi: 10.31983/j-sikep.v3i2.8410.
[2] A. Rosyida and T. B. Sasongko, “Early Detection of Alzheimer’s Disease with the C4.5 Algorithm Based on BPSO (Binary Particle Swarm Optimization),” Jurnal Sisfokom (Sistem Informasi dan Komputer), vol. 12, no. 3, pp. 341–349, 2023, doi: 10.32736/sisfokom.v12i3.1716.
[3] Jan Sudir Purba, “Potential Implication of Treatments for Alzheimer’s Disease: Current and Future,” Medicinus, vol. 36, no. 1, pp. 3–10, 2023, doi: 10.56951/medicinus.v36i1.112.
[4] D. Arlinta, “Alzheimer Masih Terabaikan, Banyak Kasus Tidak Terdeteksi,” Kompas.id, 2024. https://www.kompas.id/baca/humaniora/2024/09/08/alzheimer-masih-terabaikan-banyak-kasus-tidak-terdeteksi (accessed Sep. 29, 2024).
[5] N. Nurbaiti, S. G. Sutoro, E. Supriyaningsih, S. W. Wiyanti, and I. Maesaroh, “Edukasi untuk Deteksi Dini dan Perawatan Lansia dengan Alzheimer di Masa Pandemi Covid-19,” Jurnal Kreativitas Pengabdian Kepada Masyarakat, vol. 6, no. 7, pp. 2887–2895, 2023, doi: 10.33024/jkpm.v6i7.10093.
[6] A. G. M. Sianturi, “Stadium, Diagnosis, dan Tatalaksana Penyakit Alzheimer,” Majalah Kesehatan Indonesia, vol. 2, no. 2, pp. 39–44, 2021, doi: 10.47679/makein.202132.
[7] N. S. Riasari, D. Djannah, K. Wirastuti, and M. Silviana, “Faktor-Faktor yang Mempengaruhi Penurunan Fungsi Kognitif pada Pasien Prolanis Klinik Pratama Arjuna Semarang,” Jurnal Pendidikan Tambusai, vol. 6, pp. 3049–3056, 2022, doi: https://doi.org/10.31004/jptam.v6i1.3345.
[8] A. Arfina, “Pengaruh Edukasi Terhadap Pengetahuan Masyarakat Tentang Deteksi Dini Alzheimer Di Kelurahan Labuh Baru Pekanbaru,” Health Care: Jurnal Kesehatan, vol. 10, no. 01, pp. 256–261, 2021, doi: 10.36763/healthcare.v10i2.170.
[9] L. Ratnawati and D. R. Sulistyaningrum, “Penerapan Random Forest untuk Mengukur Tingkat Keparahan Penyakit pada Daun Apel,” Jurnal Sains dan Seni ITS, vol. 8, no. 2, 2020, doi: 10.12962/j23373520.v8i2.48517.
[10] R. N. Alifah et al., “Perbandingan Metode Tree Based Classification untuk Masalah Klasifikasi Data Body Mass Index,” Indonesian Journal of Mathematics and Natural Science, vol. 47, no. 1, p. 2024, 2024, doi: https://doi.org/10.15294/m2k97436.
[11] M. A. Abubakar, M. Muliadi, A. Farmadi, R. Herteno, and R. Ramadhani, “Random Forest Dengan Random Search Terhadap Ketidakseimbangan Kelas Pada Prediksi Gagal Jantung,” Jurnal Informatika, vol. 10, no. 1, pp. 13–18, 2023, doi: 10.31294/inf.v10i1.14531.
[12] Y. A. Saadoon and R. H. Abdulamir, “Improved Random Forest Algorithm Performance for Big Data,” Journal of Physics Conference Series, vol. 1897, no. 1, 2021, doi: 10.1088/1742-6596/1897/1/012071.
[13] H. A. and S. A. Ludwig, “Hyperparameter Optimization: Comparing Genetic Algorithm against Grid Search and Bayesian Optimization,” IEEE Congress on Evolutionary Computation (CEC), pp. 1551–1559, 2021, doi: 10.1109/CEC45853.2021.9504761.
[14] K. W. Kayohana, “Klasifikasi penyakit hati menggunakan random forest dan knn,” vol. 8, no. 4, pp. 7924–7929, 2024, doi: https://doi.org/10.36040/jati.v8i4.10457.
[15] D. H. Depari, Y. Widiastiwi, and M. M. Santoni, “Perbandingan Model Decision Tree, Naive Bayes dan Random Forest untuk Prediksi Klasifikasi Penyakit Jantung,” Informatik : Jurnal Ilmu Komputer, vol. 18, no. 3, p. 239, 2022, doi: 10.52958/iftk.v18i3.4694.
[16] A. Samad and E. Samet Aydı, “Rapid Alzheimer’s Disease Diagnosis Using Advanced Artificial Intelligence Algorithms,” International Journal of Innovative Science and Research Technology, vol. 9, no. 6, pp. 1760–1768, 2024, doi: 10.38124/ijisrt/ijisrt24jun1915.
[17] A. Bijaksana, P. Negara, H. Muhardi, and I. M. Putri, “Analisis Sentimen Maskapai Penerbangan Menggunakan Metode Naive Bayes Dan Seleksi Fitur Information Gain Sentiment Analysis on Airlines Using Naïve Bayes Method and Feature Selection Information Gain,” Jurnal Teknologi Informasi dan Ilmu Komputer, vol. 7, no. 3, pp. 599–606, 2020, doi: 10.25126/jtiik.202071947.
[18] M. Frananda Adiezwara Ramadhan, I. Rizal Setiawan, and A. Asriyanik, “Klasifikasi Hoax Dan Fakta Menggunakan Algoritma Shallow Neural Network Pada Berita Politik Pemilihan Presiden Indonesia 2024,” JATI (Jurnal Mahasiswa Teknik Informatika, vol. 8, no. 4, pp. 8006–8013, 2024, doi: 10.36040/jati.v8i4.10621.
[19] A. Devia and B. Soewito, “Analisis Perbandingan Metode Seleksi Fitur untuk Mendeteksi Anomali pada Dataset CIC-IDS-2018,” Jurnal Teknologi Dan Sistem Informasi Bisnis-JTEKSIS, vol. 5, no. 4, p. 572, 2023, doi: https://doi.org/10.47233/jteksis.v5i4.1069 Abstract.
[20] I. K. Hasan, R. Resmawan, and J. Ibrahim, “Perbandingan K-Nearest Neighbor dan Random Forest dengan Seleksi Fitur Information Gain untuk Klasifikasi Lama Studi Mahasiswa,” Indonesian Journal of Applied Statistics, vol. 5, no. 1, p. 58, 2022, doi: 10.13057/ijas.v5i1.58056.
[21] P. R. Togatorop, M. Sianturi, D. Simamora, and D. Silaen, “Optimizing Random Forest using Genetic Algorithm for Heart Disease Classification,” Lontar Komputer: Jurnal Ilmiah Teknologi Informasi, vol. 13, no. 1, p. 60, 2022, doi: 10.24843/lkjiti.2022.v13.i01.p06.
[22] Z. K. Nur, R. Wijaya, and G. S. Wulandari, “Optimizing Emotion Recognition with Wearable Sensor Data : Unveiling Patterns in Body Movements and Heart Rate through Random Forest Hyperparameter Tuning,” Jurnal Media Informatika Budidarma, vol. 8, no. 3, pp. 1–12, 2024, doi: https://doi.org/10.30865/mib.v8i3.7761.
[23] I. Muhamad Malik Matin, “Hyperparameter Tuning Menggunakan GridsearchCV pada Random Forest untuk Deteksi Malware,” Multinetics, vol. 9, no. 1, pp. 43–50, 2023, doi: 10.32722/multinetics.v9i1.5578.
[24] R. El Kharoua, “Alzheimer’s Disease Dataset,” Kaggle, 2024. https://www.kaggle.com/dsv/8668279 (accessed Aug. 01, 2024).
[25] W. Agwil, H. Fransiska, and N. Hidayati, “Analisis Ketepatan Waktu Lulus Mahasiswa Dengan Menggunakan Bagging Cart,” FIBONACCI : Jurnal Pendidikan Matematika dan Matematika, vol. 6, no. 2, p. 155, 2020, doi: 10.24853/fbc.6.2.155-166.
[26] Y. Yuliani, “Algoritma Random Forest Untuk Prediksi Kelangsungan Hidup Pasien Gagal Jantung Menggunakan Seleksi Fitur Bestfirst,” Infotek : Jurnal Informatika dan Teknologi, vol. 5, no. 2, pp. 298–306, 2022, doi: 10.29408/jit.v5i2.5896.
[27] R. Tuntun, K. Kusrini, and K. Kusnawi, “Analisis Perbandingan Kinerja Algoritma Klasifikasi dengan Menggunakan Metode K-Fold Cross Validation,” Jurnal Media Informatika Budidarma, vol. 6, no. 4, p. 2111, 2022, doi: 10.30865/mib.v6i4.4681.
[28] G. A. Pradipta and Putu Desiana Wulaning Ayu, “Kombinasi Inisial Filtering Oversampling dengan Metode Ensemble Classifier pada Klasifikasi Data Imbalanced,” Jurnal Sistem dan Informatika, vol. 17, no. 2, pp. 137–145, 2023, doi: 10.30864/jsi.v17i2.591.
[29] T. A. E. Putri, T. Widiharih, and R. Santoso, “Penerapan Tuning Hyperparameter Randomsearchcv Pada Adaptive Boosting Untuk Prediksi Kelangsungan Hidup Pasien Gagal Jantung,” Jurnal Gaussian, vol. 11, no. 3, pp. 397–406, 2023, doi: 10.14710/j.gauss.11.3.397-406.
[30] M. Fajri and A. Primajaya, “Komparasi Teknik Hyperparameter Optimization pada SVM untuk Permasalahan Klasifikasi dengan Menggunakan Grid Search dan Random Search,” Journal of Applied Informatics Computing, vol. 7, no. 1, pp. 14–19, 2023, doi: 10.30871/jaic.v7i1.5004.
[31] Hajiar Yuliana, “Hyperparameter Optimization of Random Forest for 5G Coverage Prediction,” Buletin Pos dan Telekomunikasi, vol. 22, no. 1, pp. 75–90, 2024, doi: 10.17933/bpostel.v22i1.390.
[32] I. Afdhal, R. Kurniawan, I. Iskandar, R. Salambue, E. Budianita, and F. Syafria, “Penerapan Algoritma Random Forest Untuk Analisis Sentimen Komentar Di YouTube Tentang Islamofobia,” Jurnal Nasional Komputasi dan Teknologi Informasi, vol. 5, no. 1, pp. 122–130, 2022, doi: https://doi.org/10.32672/jnkti.v5i1.4004.
[33] C. J. S. Leo Breiman, Jerome Friedman, R.A. Olshen, Classification and Regression Trees. 2022. doi: https://doi.org/10.1201/9781315139470.
[34] I. Wardhana, Musi Ariawijaya, Vandri Ahmad Isnaini, and Rahmi Putri Wirman, “Gradient Boosting Machine, Random Forest dan Light GBM untuk Klasifikasi Kacang Kering,” Jurnal RESTI (Rekayasa Sistem dan Teknologi Informasi), vol. 6, no. 1, pp. 92–99, 2022, doi: 10.29207/resti.v6i1.3682.
[35] S. Lestari, A. Akmaludin, and M. Badrul, “Implementasi Klasifikasi Naive Bayes Untuk Prediksi Kelayakan Pemberian Pinjaman Pada Koperasi Anugerah Bintang Cemerlang,” PROSISKO Jurnal Pengembangan Riset dan Observasi Sistem Komputer, vol. 7, no. 1, pp. 8–16, 2020, doi: 10.30656/prosisko.v7i1.2129.
[36] Y. Farida, N. Ulinnuha, S. K. Sari, and L. N. Desinaini, “Comparing Support Vector Machine and Naïve Bayes Methods with A Selection of Fast Correlation Based Filter Features in Detecting Parkinson’s Disease,” Lontar Komputer : Jurnal Ilmiah Teknologi Informasi, vol. 14, no. 2, p. 80, 2023, doi: 10.24843/lkjiti.2023.v14.i02.p02.
[37] P. R. Undersampling, “Effect of Random Under sampling , Oversampling , and SMOTE on the Performance of Cardiovascular Disease Prediction Models terhadap Kinerja Model Prediksi Penyakit Kardiovaskular,” Jurnal Matematika Statistika dan Komputasi, vol. 21, no. 1, pp. 88–102, 2024, doi: 10.20956/j.v21i1.35552.
Published
2025-06-04
How to Cite
FADHILA, Riska Nuril; ULINNUHA, Nurissaidah; YULIATI, Dian. Implementation of Random Forest Method with Information Gain Selection and Hyperparameter Tuning for Alzheimer’s Disease Classification. Lontar Komputer : Jurnal Ilmiah Teknologi Informasi, [S.l.], v. 16, n. 1, p. 1-13, june 2025. ISSN 2541-5832. Available at: <https://ojs.unud.ac.id/index.php/lontar/article/view/122136>. Date accessed: 03 nov. 2025. doi: https://doi.org/10.24843/LKJITI.2025.v16.i01.p01.