Quickly Assess the Acceptability Sentiment of White Paracetamol Intake Using KNN-SMOTE Based On Receptive Deciding

  • Rio Andika Malik Universitas Perintis Indonesia
  • Faizal Riza University of Putra Indonesia YPTK
  • Sarjon Defit University of Putra Indonesia YPTK

Abstract

This research aims to develop a fast and adaptive sentiment evaluation approach related to the use of white paracetamol using a combination of the K-Nearest Neighbors (KNN) algorithm, Synthetic Minority Over-Sampling Technique (SMOTE), and the Receptive Deciding concept. Imbalances in the dataset, where positive sentiment may predominate, are addressed through the use of SMOTE to synthesize minority class samples. The KNN algorithm is applied to build a sentiment classification model, while Receptive Deciding is used to provide adaptive intelligence to changes in sentiment. The SMOTE oversampling process is carried out to achieve class balance, while KNN is used to classify sentiment. Receptive Deciding is applied to increase the model's adaptability to changes in sentiment. The research results show that the integration of the SMOTE, KNN, and Receptive Deciding methods provides an effective approach in assessing sentiment accurately and adaptively. The developed model is able to recognize changes in sentiment over time and provide balanced evaluation results. These findings are expected to contribute to understanding public sentiment towards the use of white paracetamol, as well as being the basis for developing more effective health communication strategies.

Downloads

Download data is not yet available.

References

[1] M. Bach, “New Undersampling Method Based on the kNN Approach,” Procedia Computer Science, vol. 207, pp. 3397–3406, 2022, doi: 10.1016/j.procs.2022.09.399.
[2] M. J. Groot et al., “4-acetaminophen (Paracetamol) levels in treated and untreated veal calves, an update,” Food Control, vol. 147, no. August 2022, p. 109577, 2023, doi: 10.1016/j.foodcont.2022.109577.
[3] A. Eliasen, S. Otnes, M. Matz, L. Aunsholt, and R. Mathiasen, “Safety of rapid intravenous paracetamol infusion in pediatric patients,” Current Research Pharmacology Drug Discovery, vol. 3, no. July 2021, pp. 2–5, 2022, doi: 10.1016/j.crphar.2021.100077.
[4] G. P. Milani, A. Mercante, D. Cattaneo, I. Alberti, C. Agostoni, and F. Benini, “Safety and efficacy of non-standard posology of paracetamol to manage pain in pediatric patients,” Pharmacological Research, vol. 197, no. September, pp. 1–3, 2023, doi: 10.1016/j.phrs.2023.106981.
[5] J. Augustino, F. Moshi, A. Joho, J. Faustine, and K. Mageda, “Dataset comparing the effectiveness of perineal cold pack application over oral paracetamol 1000mg on postpartum perineal pain among women after spontaneous vaginal delivery in Dodoma region,” Data in Brief, vol. 51, p. 109766, 2023, doi: 10.1016/j.dib.2023.109766.
[6] K. Kilic, H. Ikeda, T. Adachi, and Y. Kawamura, “Soft ground tunnel lithology classification using clustering-guided light gradient boosting machine,” Journal of Rock Mechanics Geotechnical Engineering, vol. 15, no. 11, pp. 2857–2867, 2023, doi: 10.1016/j.jrmge.2023.02.013.
[7] J. C. Macuácua, J. A. S. Centeno, and C. Amisse, “Data mining approach for dry bean seeds classification,” Smart Agricultural Technology, vol. 5, no. April, 2023, doi: 10.1016/j.atech.2023.100240.
[8] M. Umer et al., “Scientific papers citation analysis using textual features and SMOTE resampling techniques,” Pattern Recognition Letters, vol. 150, pp. 250–257, 2021, doi: 10.1016/j.patrec.2021.07.009.
[9] J. Fonseca and F. Bacao, “Geometric SMOTE for imbalanced datasets with nominal and continuous features,” Expert System with Application, vol. 234, no. July, p. 121053, 2023, doi: 10.1016/j.eswa.2023.121053.
[10] A. N. Kasanah, M. Muladi, and U. Pujianto, “Penerapan Teknik SMOTE untuk Mengatasi Imbalance Class dalam Klasifikasi Objektivitas Berita Online Menggunakan Algoritma KNN,” Jurnal RESTI (Rekayasa Sistem dan Teknologi Informasi), vol. 3, no. 2, pp. 196–201, 2019, doi: 10.29207/resti.v3i2.945.
[11] S. G. Barus, “Klasifikasi Sentimen Data Tidak Seimbang Menggunakan Algoritma Smote Dan K-Nearest Neighbor Pada Ulasan Pengguna Aplikasi Pedulilindungi,” Senamika (Seminar Nasional Mahasiswa Bidang Ilmu Komputer dan Aplikasi), pp. 162–173, 2022.
[12] D. Gonzalez-Cuautle et al., “Synthetic minority oversampling technique for optimizing classification tasks in botnet and intrusion-detection-system datasets,” Applied Science, vol. 10, no. 3, 2020, doi: 10.3390/app10030794.
[13] Z. Chen, L. J. Zhou, X. Da Li, J. N. Zhang, and W. J. Huo, “The Lao text classification method based on KNN,” Procedia Computer Science, vol. 166, pp. 523–528, 2020, doi: 10.1016/j.procs.2020.02.053.
[14] M. Suvarna and N. Venkategowda, “Performance Measure and Efficiency of Chemical Skin Burn Classification Using KNN Method,” Procedia Computer Science, vol. 70, pp. 48–54, 2015, doi: 10.1016/j.procs.2015.10.028.
[15] D. A. Adeniyi, Z. Wei, and Y. Yongquan, “Automated web usage data mining and recommendation system using K-Nearest Neighbor (KNN) classification method,” Applied Computing and Informatics, vol. 12, no. 1, pp. 90–108, 2016, doi: 10.1016/j.aci.2014.10.001.
[16] I. R. Heruwidagdo, Suharjito, N. Hanafiah, and Y. Setiawan, “Performance of Information Technology Infrastructure Prediction using Machine Learning,” Procedia Computer Science, vol. 179, no. 2020, pp. 515–523, 2021, doi: 10.1016/j.procs.2021.01.035.
[17] H. Zhu et al., “Visualizing large-scale high-dimensional data via hierarchical embedding of KNN graphs,” Visual Informatics, vol. 5, no. 2, pp. 51–59, 2021, doi: 10.1016/j.visinf.2021.06.002.
[18] D. S. Jodas, L. A. Passos, A. Adeel, and J. P. Papa, “PL-kNN: A Python-based implementation of a parameterless k-Nearest Neighbors classifier [Formula presented],” Software Impacts, vol. 15, no. December 2022, p. 100459, 2023, doi: 10.1016/j.simpa.2022.100459.
[19] B. Trstenjak, S. Mikac, and D. Donko, “KNN with TF-IDF based framework for text categorization,” Procedia Engineering, vol. 69, pp. 1356–1364, 2014, doi: 10.1016/j.proeng.2014.03.129.
[20] M. Yuvalı, B. Yaman, and Ö. Tosun, “Classification Comparison of Machine Learning Algorithms Using Two Independent CAD Datasets,” Mathematics, vol. 10, no. 3, 2022, doi: 10.3390/math10030311.
[21] S. Kumar and T. D. Singh, “Fake news detection on Hindi news dataset,” Global Transitions Proceedings, vol. 3, no. 1, pp. 289–297, 2022, doi: 10.1016/j.gltp.2022.03.014.
[22] Z. E. Fitri, L. N. Sahenda, P. S. D. Puspitasari, P. Destarianto, D. L. Rukmi, and A. M. N. Imron, “The The Classification of Acute Respiratory Infection (ARI) Bacteria Based on K-Nearest Neighbor,” Lontar Komputer: Jurnal Ilmiah Teknologi Informasi, vol. 12, no. 2, p. 91, 2021, doi: 10.24843/lkjiti.2021.v12.i02.p03.
[23] S. Wazarkar, B. N. Keshavamurthy, and A. Hussain, “Region-based Segmentation of Social Images Using Soft KNN Algorithm,” Procedia Computer Science, vol. 125, pp. 93–98, 2018, doi: 10.1016/j.procs.2017.12.014.
[24] A. Imakura, M. Kihira, Y. Okada, and T. Sakurai, “Another use of SMOTE for interpretable data collaboration analysis,” Expert System with Application, vol. 228, no. August 2022, p. 120385, 2023, doi: 10.1016/j.eswa.2023.120385.
[25] A. Kummer, T. Ruppert, T. Medvegy, and J. Abonyi, “Machine learning-based software sensors for machine state monitoring - The role of SMOTE-based data augmentation,” Results in Engineering, vol. 16, no. October, 2022, doi: 10.1016/j.rineng.2022.100778.
[26] Asniar, N. U. Maulidevi, and K. Surendro, “SMOTE-LOF for noise identification in imbalanced data classification,” Journal of King Saud University - Computer and Information Science, vol. 34, no. 6, pp. 3413–3423, 2022, doi: 10.1016/j.jksuci.2021.01.014.
[27] T. M. Mohamed, “Pulsar selection using fuzzy knn classifier,” Future Computing and Informatics Journal, vol. 3, no. 1, pp. 1–6, 2018, doi: 10.1016/j.fcij.2017.11.001.
[28] M. Liang and T. Niu, “Research on Text Classification Techniques Based on Improved TF-IDF Algorithm and LSTM Inputs,” Procedia Computer Science, vol. 208, pp. 460–470, 2022, doi: 10.1016/j.procs.2022.10.064.
[29] R. Wongso, F. A. Luwinda, B. C. Trisnajaya, O. Rusli, and Rudy, “News Article Text Classification in Indonesian Language,” Procedia Computer Science, vol. 116, pp. 137–143, 2017, doi: 10.1016/j.procs.2017.10.039.
[30] A. S. Neogi, K. A. Garg, R. K. Mishra, and Y. K. Dwivedi, “Sentiment analysis and classification of Indian farmers’ protest using twitter data,” International Journal of Information Management Data Insights, vol. 1, no. 2, p. 100019, 2021, doi: 10.1016/j.jjimei.2021.100019.
[31] R. Ahuja, A. Chug, S. Kohli, S. Gupta, and P. Ahuja, “The impact of features extraction on the sentiment analysis,” Procedia Computer Science, vol. 152, pp. 341–348, 2019, doi: 10.1016/j.procs.2019.05.008.
Published
2024-03-25
How to Cite
MALIK, Rio Andika; RIZA, Faizal; DEFIT, Sarjon. Quickly Assess the Acceptability Sentiment of White Paracetamol Intake Using KNN-SMOTE Based On Receptive Deciding. Lontar Komputer : Jurnal Ilmiah Teknologi Informasi, [S.l.], v. 15, n. 1, p. 51-63, mar. 2024. ISSN 2541-5832. Available at: <https://ojs.unud.ac.id/index.php/lontar/article/view/112275>. Date accessed: 21 jan. 2025. doi: https://doi.org/10.24843/LKJITI.2024.v15.i01.p05.