Refinement of methodology and deep computational analysis of the thermal images for better estimates of pregnancy diagnosis in cynomolgus monkeys (Macaca fascicularis)

  • Huda Shalahudin Darusman Fakultas Kedokteran Hewan, Institut Pertanian Bogor, Jl. Agatis, Kampus IPB Dramaga, Bogor, Indonesia
  • Sony Hartono Wijaya Faculty of Mathematics and Natural Sciences (FMIPA), IPB University
  • Ahmad Kamal Nasution Faculty of Mathematics and Natural Sciences (FMIPA), IPB University
  • Entang Iskandar Primate Research Center, Institute of Research and Community Service, Bogor Agricultural University (IPB University),
  • Dondin Sajuthi Faculty of Veterinary Medicine, IPB University Jl. Agatis, IPB Dramaga Campus, Bogor, West Java, Indonesia 16880

Abstract

The current use of thermal imaging has been documented in wild animals due to the benefit for having real-time results with less or almost no restrain or invasive methods required - and this is significant for better well-being. This paper will explore the thermal imaging studies as a part of employing non-invasive methods in evaluating physiological function, in particular with refinement of the methods, followed by further computational analysis of the images to ensure the validity of the methods as predictive tools for pregnancy diagnosis. We conducted refinements in thermal imaging methods and computational analysis of deep learning for pregnancy diagnosis of cynomolgus monkeys (Macaca fascicularis) at breeding facility of The Primate Research Center, LPPM IPB University. Subjects were already identified by ultrasound as pregnant in 80, 120 and 130 days. Thermal images along with the temperature data were obtained from FLIR ONE camera in sedated animals with dorso-ventral recumbence. The temperature data were analyzed with linear regression to correlate the skin temperature and the days of pregnancy to make a prediction of pregnancy days based on temperature data. There is a positive correlation of the temperature to the pregnancy days with a function of temperature to days. Further computational analysis of the thermal image, the results showed that the refined methods and the computational analysis brought better interpretation to evaluate health and reproductive status, in particular with the pregnancy diagnosis.

Downloads

Download data is not yet available.

Author Biographies

Huda Shalahudin Darusman, Fakultas Kedokteran Hewan, Institut Pertanian Bogor, Jl. Agatis, Kampus IPB Dramaga, Bogor, Indonesia

Departement of Anatomy, Physiology and Pharmacology

Sony Hartono Wijaya, Faculty of Mathematics and Natural Sciences (FMIPA), IPB University

Department of Computer Science

Ahmad Kamal Nasution, Faculty of Mathematics and Natural Sciences (FMIPA), IPB University

Department of Computer Science

Dondin Sajuthi, Faculty of Veterinary Medicine, IPB University Jl. Agatis, IPB Dramaga Campus, Bogor, West Java, Indonesia 16880

Department of Clinic, Reproductive and Pathology

Published
2021-12-31
How to Cite
DARUSMAN, Huda Shalahudin et al. Refinement of methodology and deep computational analysis of the thermal images for better estimates of pregnancy diagnosis in cynomolgus monkeys (Macaca fascicularis). Jurnal Veteriner, [S.l.], p. 467-473, dec. 2021. ISSN 2477-5665. Available at: <https://ojs.unud.ac.id/index.php/jvet/article/view/54079>. Date accessed: 04 nov. 2025. doi: https://doi.org/10.19087/jveteriner.2021.22.4.467.
Section
Articles