Prediksi Anomali Kandungan Panas Laut dengan Random Forest Regressor: Pola dan Implikasi Ekologis
Ocean Heat Anomaly; Ecological Impact; Biodiversity; Random Forest Regressor Modeling
Abstract
Indonesian waters are experiencing an anomalous increase in sea heat content, which is impacting aquatic ecosystems. This research aims to predict these anomalies and their implications for marine biodiversity using the Random Forest Regression algorithm. Ocean heat content anomaly data from 2000 to 2023 was processed using Python. The visualization shows an upward trend over the period. The Random Forest Regression model is used with 100 estimators and random_state=42. Performance evaluation was measured by Mean Squared Error (MSE) of 0.2952, Mean Absolute Percentage Error (MAPE) of 2.73%, an R² Score of 0.9848, and an overall accuracy of 97.27%. The most important variable is the year of observation. The prediction results show an anomaly value of 19.66 x 10²² Joules in 2023, which remains relatively stable from 2024 to 2026. This increase has implications for biota metabolism, coral reefs, ocean acidification, species migration, climate variability, and species interactions. Mitigation and adaptation strategies are required to protect marine biodiversity.
Downloads
References
Dewi, K. V., Pradesti, R., Siti Nurlaela, Yunita Murnisari, Ade Suryanda, & Nailul Rahmi Aulya. (2023). Dampak Perubahan Iklim Dan Aktivitas Manusia Terhadap Kerusakan Ekosistem Terumbu Karang Dan Biota Laut Di sekitarnya. Panthera : Jurnal Ilmiah Pendidikan Sains dan Terapan, 8-14.
Fitri, C. A. (2024). Pengaruh Pemanasan Global dan Pengasaman Laut Terhadap Biota. JOANE Vol. 02No. 01, 13-16.
Herwanto, Widiyaningtyas, T., & Indriana, P. (2019). Penerapan Algoritme Linear Regression untuk Prediksi Hasil Panen Tanaman Padi. J. Nas. Tek. Elektro dan Teknol. Inf., vol. 8, no. 4, 364.
Nurafifah, U. O., Zainuri, M., & Wirasatriya, A. (2022). Pengaruh ENSO dan IOD Terhadap Distribusi Suhu Permukaan Laut dan Klorofil-a Pada Periode Upwelling di Laut Banda. Indonesia Journal of Oceanography (IJOCE) Vol 04 No 03, 74-85.
Prayonto. (2024). Blue horizons: Menavigasi kebijakan publik untuk melindungi dan memulihkan ekosistem perairan. Bandung: Indonesia Emas Group.
Richardson, A., Chaudhary, C., Schoeman, D., & Costello, M. J. (2021, April 18). Makhluk Laut Di Ekuator Berpindah Ke Tempat Yang Lebih Dingin. Sejarah Tunjukkan Ini Bisa Berujung Pada Kepunahan Massal. University of the Sunshine Coast Australia, 1-6. Retrieved from UniSC.
S. S. Defiyanti Muhammad, Dermawan, & Arif, B. (2019). Algoritma C4.5 Untuk Memprediksi Produktivitas Tanaman Padi Di Karawang. Inform. Pertan., no. Vol 28, No 2, 103–110.
Saadah, S., & Salsabila, H. (2021). Prediksi Harga Bitcoin Menggunakan Metode Random Forest (Studi Kasus: Data Acak Pada Awal Masa Pandemic Covid-19). Jurnal Politeknik Caltex Riau, Vol. 7, No. 1, 24-32.
Setiawan, F., Muttaqin, A., Tarigan, S., A., M. M., Hotmariyah, M., Sabi, A., & Pingkan, J. (2017). Pemutihan Karang Akibat Pemanasan Global Tahun 2016 Terhadap Ekosistem Terumbu Karang: Studi Kasus Di TWP Gili Matra (Gili Air, Gili Meno Dan Gili Trawangan) Provinsi NTB. Journal of Fisheries and Marine Research, 39-54.
Surakusumah, W. (2011). Perubahan Iklim Dan Pengaruhnya Terhadap Keanekaragaman Hayati. Makalah Perubahan Lingkungan Global. Universitas Pendidikan Indonesia. , 1-24.
Suryaningrum, M., K., & W, S. P. (2015). Analisis dan Penerapan Metode Single Exponential Smoothing untuk Prediksi Penjualan pada Periode Tertentu (Studi Kasus: PT. Media Cemara Kreasi). Prosiding Senatif, 259–266.
Copyright Notice
The copyright to this article is transferred to Journal of Marine Research and Technology (JMRT). The copyright transfer covers the exclusive right and license to reproduce, publish, distribute and archive the article in all forms and media of expression now known or developed in the future, including reprints, translations, photographic reproductions, microform, electronic form (offline, online) or any other reproductions of similar nature.