DC-MICROGRID DESIGN WITH PV HYBRID SYSTEM AND PLN NETWORKS FOR DC LOADS
Abstract
The microgrid system is an interconnected network system of various energy sources distributed into a small network that can operate independently or connected to the main network (PLN). The purpose of using the system microgrid is to create a more efficient method of generating electrical energy by utilizing renewable energy as a source of electrical energy. In this final project, a DC system microgrid with hybrid PV and PLN is made to supply a 12 V 19 W DC pump used in the pond. Two 50Wp PVs are installed in series and one 12V 33Ah lead acid battery is used as storage energy for PV output. Two 50 Wp PVs arranged in series are capable of producing a maximum voltage of up to 34 V when the irradiation value is above 1000 Wb/m2. With the use of PID control, the buck converter is able to reduce the PV output voltage from 34 V to a constant with an average output voltage of 13.798 V. The output of the buck converter is used as the value of the voltage charging on the battery. By doing test charging a battery close loop, the original battery voltage value was 12.48 V to 12.77 V with a charging time of 80 minutes. For the backup source, namely the PLN grid, used uncontrolled fullwave rectifier is as a rectifier from 220Vac to 24 Vdc. Because the required load voltage is 12 V, used voltage regulator is which regulates the output of the uncontrolled fullwave rectifier from 24 Vdc to 12 Vdc. The process switching between the PV source and the PLN grid source is carried out using the battery voltage value parameter. When the battery voltage value is more than 11.96 V the microcontroller will condition the main source relay (PV) to be ON and the backup source relay (PLN grid) is OFF, but when the battery voltage value is less than 11.96 V the microcontroller will condition the relay. the main source (PV) is OFF and the backup source relay (PLN) is ON.
Downloads
References
[2] Budiyanto and R. Setiabudy, “Jaringan mikro arus searah ( dc microgrid ) sebagai upaya ketersediaan energi listrik dalam pengembangan energi terbarukan,” Semin. Nas. Sains dan Teknol. Univ. Muhammadiyah Jakarta 2014, no. November, pp. 1–7, 2014.
[3] Z. Miao, L. Xu, V. R. Disfani, and L. Fan, “An SOC-based battery management system for microgrids,” IEEE Trans. Smart Grid, vol. 5, no. 2, pp. 966–973, 2014, doi: 10.1109/TSG.2013.2279638.
[4] Pratiwi, Armadilla and Nugraha, Syechu and Sunarno, Epyk, “Desain dan Simulasi Bidirectional DC-DC Converter untuk Penyimpanan Energi pada Sistem Fotovoltaik”, Jurnal Nasional Teknik Elektro dan Teknologi Informasi, 2020, 9. 305-310. 10.22146/.v9i3.377
[5] Alim, Muhammad and Windarko, Ayub and Rakhmawati, Renny, “Fuzzy Logic Control Design On Buck Converter For Thermo Electric Air Cooler Power Supply”, JAREE (Journal on Advanced Research in Electrical Engineering), 2020, 4. 10.12962/j25796216.v4.i2.137.
[6] Pulungan, Ali Basrah and Sukardi and Ramadhani, Taslim, “Buck Converter Sebagai Regulator Aliran Daya Pada Pengereman Regeneratif”, Jurnal EECCIS, [S.l.], v. 12, n. 2, p. pp. 93-97, nov. 2018. ISSN 2460-8122.
[7] Barkah, Rahma, “Simulasi Charge Discharge Model Baterai Lead Acid”, Jurnal Ilmu dan Inovasi Fisika, 2019, 3. 128-134. 10.24198/jiif.v3i2.23257.
[8] N. T. Mooniarsih, “Simulasi dan Analisis Kinerja Prediktor Smith pada Kontrol Proses yang Disertai Tundaan Waktu,” Elkha, vol. 8, no. 2, pp. 6–13, 2016, doi: 10.26418/elkha.v8i2.18287.
[9] Rakhmawati, S. T.; MT, Renny, “Mobil Pintar Dengan Pid-fuzzy Sebagai Pengatur Kecepatan Berdasarkan Keramaian”, Jurnal Fakultas Hukum UII, 2008.
[10] Surya Negara, I B Kd; Arta Wijaya, I Wayan; Maharta Pemayun, A A Gd, “ANALISIS PERBANDINGAN OUTPUT DAYA LISTRIK PANEL SURYA SISTEM TRACKING DENGAN SOLAR REFLECTOR. Jurnal SPEKTRUM”, [S.l.], v. 3, n. 1, p. 7-13, mar. 2016. ISSN 2684-9186.