Solid Catalyst in Esterification and Transesterification Reactions for Biodiesel Production: A Review

  • Nengah Simpen
  • IN. Suprapta Winaya
  • ID.G. Ary Subagia
  • IW. Budiarsa Suyasa

Abstract

Biodiesel is considered as an important substitute for the replacement of fossil diesel due to its biodegradable, renewable and non-toxicity to environment. Biodiesel consist of mixture of mono alkyl esters of long chain fatty acids. It is produced from vegetable oils, animal fats and waste cooking oil. Solid catalysts are promising and advantageous for biodiesel production because those could be reusable, environmentally benign and are more effective than liquid catalysts. Moreover, the application of solid catalysts does not produce soaps through triglycerides saponification or free fatty acids neutralization. When triglycerides as major component of oil react with alcohol (methanol or ethanol) to form biodiesel in the presence of base catalyst, this called is transesterification. When acid catalysts are used for reducing free fatty acids to form biodiesel, this called is esterification. The application of solid catalysts in esterification and transesterification reactions for biodiesel production are discussed in this review. 

Downloads

Download data is not yet available.

References

1. Sani, Y.M., Daud, W.M.A.W., and Aziz, A.R.A., Activity of solid acid catalysts for biodiesel production: a critical review. Applied Catalysis A: General, 2014. 470: p. 140-160.
2. Refaat, A.A., Biodiesel production using solid metal oxide catalysts-review. International Journal of Environment Science Technology, 2011. 18(1): p. 203-221.
3. Sivasamy, A., Cheah, K.Y., Fornasiero, P., Kemausuor, F., Zinoviev, S., and Miertus, S., Catalytic applications in the production of biodiesel from vegetable oils. ChemSusChem, 2009. 2: p. 278-300.
4. Panudare, D.C., and Rathod, V.K., Application of waste cooking oil other biodiesel: review. Irranian Journal Chemc. Engineering, 2015. 12(3): p. 55-76.
5. Gashaw, A., and Teshita, A., Production of biodiesel from waste cooking oil and factors affecting its formation: A review. International Journal of Renewable and Sustainable Energy, 2014. 3(5): p. 92-98.
6. Xie, W., and Li, H., Alumina-supported potassium iodide as a heterogeneous catalyst for biodiesel production from soybean oil. Journal of Molecular Catalysis A: Chemical, 2006. 255: p. 1–9.
7. Musa, I.A., The effects of alcohol to oil molar ratios and the type of alcohol on biodiesel production using transesterification process Egyptian Journal of Petroleum, 2016. 25: p. 21-31.
8. Coman, S.M., and Parpulescu, V.I., Heterogenious catalysis for biodiesel production, Elsevier, Editor. 2013, Elsevier. p. 93-136.
9. Nair, P., Singh, B., Upadhyay, S.N., and Sharma, Y.C., Synthesis of biodiesel from low FFA waste frying oil using calcium oxide derived from Mereterix as a heterogeneous catalyst. J. Cleaner. Prod., 2012. 29-30: p. 82-90.
10. Robles, M.A., González, M.P.A., Esteban, C.L., and Molina, G.E., Biocatalysis: towards ever greener biodiesel production. Biotechnol. Adv., 2009. 27: p. 398-408.
11. Mohamed, R.M., Kadry, G.A., Abdel-Samad, H.A., and Awad, M.E., High operative heterogeneous catalyst in biodiesel production from waste cooking oil. Egyptian Journal of Petroleum, 2019. xxx(xxxx): p. 1-7.
12. Amin, A., Review of diesel production from renewable resources: catalysis, process kinetics and technologies. Ain Shams Engineering Journal, 2019. 10: p. 821-839.
13. Abed, K.A., Gad, M.S., Morsi, A.K.E., Sayed, M.M., and Elyazeed, S.A., Effect of biodiesel fuels on diesel engine emissions. Egyptian Journal of Petroleum, 2019. 28: p. 183–188.
14. Lee, A.F., Bennett, J.A., Manayil, J.C., and Wilson, K., Heterogeneous catalysis for sustainable biodiesel production via esterification and transesterification. Chemical Society Reviews, 2014. 43: p. 7887–7916.
15. Carlucci, C., Degennaro, L., and Luisi, R., Titanium dioxide as a catalyst in biodiesel production. Catalysts, 2019. 9(75): p. 1-25.
16. Atadashi, I.M., Aroua, M.K., Aziz, A.R., and Sulaiman, N.M.N., The effects of catalysts in biodiesel production: a review. Journal of Industrial and Engineering Chemistry, 2013. 19(1): p. 14–26.
17. Silva, L.C.A., Silva, E.A., Monteiro, M.R., Silva, C., Teleken, J.G., and Alves, H.J., Effect of the chemical composition of smectites used in KF/clay catalysts on soybean oil transesterification into methyl esters. Applied Clay Science, 2014. 102: p. 121–127.
18. Guo, F., and Fang, Z., Biodiesel production with solid catalysts. Biodiesel Feedstocks & Processing Technologies, 2011: p. 1–21.
19. Hidayat, A., Rochmadi, Wijaya,K., Nurdiawati, A., Kurniawand,W., Hinode,H., Yoshikawa,K.,and Budiman, A. Esterification of palm fatty acid distillate with high amount of free fatty acids using coconut shell char based catalyst. in The 7th International Conference on Applied Energy – ICAE2015. 2015. Elsevier Ltd.
20. Rachmat, A., Trisunaryanti, W., Sutarno, and Wijaya, K., Synthesis and characterization of sulfated zirconia mesopore and its application on lauric acid esterification. Mater Renew Sustain Energy, 2017. 6(13): p. 1-9.
21. Jha, P., and Sontakke, A., Biodiesel production from waste cooking oil selecting a solid catalyst derived from activated coconut coir. Int. J. of Energy Prod. & Mgmt., 2018. 3(2): p. 122–131.
22. Gardy, J., Osatiashtianib, A., Cespedesc, O., Hassanpoura, A., Laia, X., Leed, A.F., Wilsond, K., and Rehane, M., A magnetically separable SO4/Fe-Al-TiO2 solid acid catalyst for biodiesel production from waste cooking oil. Applied Catalysis B: Environmental, 2018. 234: p. 268-278.
23. Hossain, M.N., Bhuyan, Md.S.U.S., Alam, A.H.Md.A., & Seo, Y.C., Optimization Biodiesel production from waste cooking oil using S-TiO2/SBA-15 heterogeneous acid catalyst. Catalysts, 2019. 9(67): p. 1-15.
24. Ballotina, F.C., da Silvab, M.J., Lagoa, R.M., and Teixeira, A.P.de-C., Solid acid catalysts based on sulfonated carbon nanostructures embedded in an amorphous matrix produced from bio-oil: esterification of oleic acid with methanol. Journal of Environmental Chemical Engineering, 2020. 8: p. 1-7.
25. Lam, M.K., and Lee, K.T.,, Mixed methanol–ethanol technology to produce greener biodiesel from waste cooking oil: A breakthrough for SO4 2−/SnO2–SiO2 catalyst. Fuel Processing Technology, 2011. 92: p. 1639–1645.
26. Chen, K.T., Wang, J.X., Dai, Y.M., Wang, P.H., Liou, C.Y., Nien, C.W., and Chen, C.C., Rice husk ash as a catalyst precursor for biodiesel production. Journal of the Taiwan Institute of Chemical Engineers, 2013. 44(4): p. 622–629.
27. Kaur, M., and Ali, A., An efficient and reusable Li/NiO heterogeneous catalyst for ethanolysis of waste cottonseed oil. Eur. J. Lipid Sci. Technol., 2015. 117: p. 550-560.
28. Amos, O., Ogunniyi, D.S., and Odetoye, T.E., Production of biodiesel from parinari polyandra b. seed oil using bio-based catalysts. Nigerian Journal of Technological Development, 2016. 13(1): p. 26-30.
29. Mabitla, S., Molote, M., Sadare, O.O., and Daramola, M.O. Transesterification of animal fat to biodiesel over calcined solid sodium silicate catalyst. in Proceedings of the World Congress on Engineering and Computer Science. 2016. San Francisco, USA: WCECS 2016.
30. Wendi, C., V., and Taslim. Effect of reaction temperature and catalyst concentration for producing biodiesel from waste beef tallow using heterogeneous catalyst CaO from waste eggshell. in The 5th Sriwijaya International Seminar on Energy and Environmental Science & Technology. 2014. Palembang, Indonesia.
31. Lestari, K.A.T., Simpen, IN., dan Santi, S.R., Optimasi rasio molar dan waktu reaksi pada pembuatan biodiesel dari minyak biji malapari (Pongamia Pinnata L.) dengan katalis abu sekam padi termodifikasi litium. Cakra Kimia [Indonesian E-Journal of Applied Chemistry], 2017. 5(1).
32. Widayat, S., H., Syaiful, Khaibar, A., and Almakhi, M.M., Biodiesel production by using heterogeneous catalyst from fly ash and limestone. International Conference on Sustainable Energy Engineering and Application (ICSEEA), 2017: p. 41-44.
33. Solis, J.L., Albin L. Berkemar, A.L., Alejo, L., and Kiros, Y., Biodiesel from rapeseed oil (Brassica napus) by supported Li2O and MgO. Int J Energy Environ Eng, 2017. 8: p. 9–23.
34. Varghese, R., and Johnson, J.P.H.I., Synthesis and characterizations of needle-shaped CuO nanoparticles for biodiesel application. Int. J. Adv. Res., 2017. 5(1): p. 1642-1648.
35. Borah, M.J., Devi, A., Das, V., and Deka, D., Catalytic conversion of thevetia peruviana oil into biodiesel by TiO2-ZnO nanocatalyst. International Journal of Research in Engineering and Technology, 2017. 6(1): p. 56-60.
36. Simpen, I.N., Negara, IM.S., and Puspawati, N.M., The Characterization of Heterogeneous Nanocatalyst of Biohydroxyapatite-Lithium and its Application for Converting Malapari Seed Oil (Milletia pinnata L.) to Biodiesel. Oriental Journal of Chemistry, 2018. 34(4): p. 1817-1823.
37. Hartono, R., Wijanarko, A., and Hermansyah, H., Synthesis of biodiesel using local natural zeolite as heterogeneous anion exchange catalyst. IOP Conf. Series: Materials Science and Engineering, 2018. 345.
38. Utubira, Y., Wijaya, K., Triyonol, and Kunarti, E.S., Kalium hydroxide/zirconia pillared bentonite for palm oil transesterification. Oriental Journal of Chemistry, 2018. 34(3): p. 1484-1491.
39. Astuti, N.K.D., Simpen, IN., dan Suarsa, IW., Transesterifikasi minyak biji karet (Hevea Brasiliensis) menggunakan katalis heterogen cangkang kepiting limbah seafood termodifikasi K2O. Jurnal Kimia, 2019. 13(1): p. 1-8.
40. Pratigto, S., dan Istadi, Kinetika reaksi transesterifikasi minyak kedelai menjadi biodiesel dengan CaO. Jurnal Kimia Sains dan Aplikasi, 2019. 22(5): p. 213-219.
41. Taslim, I., Bani, O., Parinduri, S.Z.D.M., Ningsih, P.R.W., and Taruna, N., Preparation, Characterization and Application of Natural Zeolite from Tapanuli Indonesia Modified with KOH as Catalyst Support for Transesterification of Rice Bran Oil. International Journal of Engineering Research and Technology, 2019. 12(9): p. 1452-1456.
42. Ortega, G.N., Ramírez, R.E., Muñoz, S.A., Molina, Z.A., and Vallejo, M.J., Use of Co/Fe-mixed oxides as heterogeneous catalysts in obtaining biodiesel. Catalysts, 2019. 9(403): p. 1-17.
43. Herlina, I., Simanjuntak, W., Rilyanti, M., and Safitra, E.R., Physical characteristics and catalytic activity of sulfated sugarcane bagasse silica (SiO2/SO3-H+) for coconut oil transesterification. Resayan Journal of Chemistry, 2019. 12(3): p. 1595-1600.
44. Al-Ani, A., Mordvinova, N.E., Lebedev, O.I., Khodakov, A.Y. and Zholobenko, Ion-exchanged zeolite P as a nanostructured catalyst for biodiesel production. Energy Reports, 2019. 5: p. 357-363.
45. Ulfah, M., Firdaus, Octavia, S., Suherman, H., and Subagjo. Biodiesel production through waste cooking oil (WCO) esterification using sulfated alumina as catalyst. in 1st International Symposium of Indonesian Chemical Engineering (ISIChem) 2018. 2019.
46. Degfie, T.A., Mamo, T.T., and Mekonnen, Y.S., Optimized biodiesel production from waste cooking oil (WCO) using (CaO) nanocatalyst. Scientific Reports-Natureresearch, 2019. 9(18982): p. 1-8.
Published
2020-12-15
How to Cite
SIMPEN, Nengah et al. Solid Catalyst in Esterification and Transesterification Reactions for Biodiesel Production: A Review. International Journal of Engineering and Emerging Technology, [S.l.], v. 5, n. 2, p. 168-174, dec. 2020. ISSN 2579-5988. Available at: <https://ojs.unud.ac.id/index.php/ijeet/article/view/67713>. Date accessed: 15 jan. 2025. doi: https://doi.org/10.24843/IJEET.2020.v05.i02.p29.