Design Of A Potential Difference Measuring Instrument Using A Capacitive Sensor Based On Atmega328 Microcontroller

Abstract

A potential difference measuring instrument was made using a capacitive sensor based on ATmega328 microcontroller. The design instrument consists of two (2) silver plates as electrodes, INA219 module, Arduino Nano module, LM2596 module, Organic Light-Emitting Diode (OLED) and 9V 1A (DC) adapter. The method the instrument works is the input, namely the adapter and electrolyte solution as a source of electrical energy, and the capacitive sensor as the electrode, namely the anode and cathode. The input data is processed by Arduino Nano ATmega328 with output displayed on OLED and in excel software using PLX-DAQ software. The instrument has been calibrated with standard electrode, namely Hanna HI 5414 reference electrode. Calibration was carried out by comparing the measurement results of the design instrument with a standard instrument with a voltage measurement accuracy of 99.82%, which indicates a good level of accuracy compared to the standard instrument.

Downloads

Download data is not yet available.

References

1. Prakoso W. Pengaruh Variasi Penampang Elektroda dan Konsentrasi Elektrolit Terhadap Potensial Sel Volta dengan Metode Sel Elektrokimia. E-Proceeding of Engineering. 2020; 7(2).
2. Putri P, Sumadiyasa M, & Rupiasih N. N. Pengaruh Waktu Paparan Radiasi UV-C Terhadap Karakteristik Rapat Arus Difusi Ion Pada Membran Kitosan. Buletin Fisika. 2016; 17 (1): 49-56.
3. Bengi F. Perbandingan Arus dan Tegangan Larutan Elektrolit Berbagai Jenis Garam. Jurnal Pendidikan Fisika dan Sains. 2018; 1(1): 32-36.
4. Johanson. Capacitive Sensing: Method and Application. Binus University. 2012; 3-9.
5. Pandia A. Pengembangan Alat Peraga Uji Daya Hantar Listrik Berbasis STEM dan Pengaruhnya Terhadap Literasi Kimia Peserta Didik. Chemistry in Education. 2021; 10(2): 30-37.
6. Masmiani. Larutan Elektrolit, Larutan Non Elektrolit dan Asam Basa, Science Education Development and Empower-ment Centre; 2015.
7. Rupiasih N, Ratnawati A.A, Ratini N, Suandayani, Suryatika I.B, Trisnawati N, Sutapa N. Modul Praktikum Eksperimen Biofisika-2. Jurusan Fisika Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Udayana Bukit Jimbaran; 2018.
8. Lesmana J. Rancang Bangun Solar Cell Tracking System dan Proteksi Beban Lebih Berbasis Arduino, Jurnal Teknik Elektro. 2019; 8(1): 229-237.
9. Ham G. Optimalisasi Catu Daya pada Sistem Monitoring Kondisi Cuaca. Teknil Elektro Universitas Sam Ratulangi; 2022.
10. Wicaksana A. Perancangan Alat Ukur Kekeruhan pada Air Kolam Menggunakan Optocoupler (Sensor Turbidity) berbasis Arduino. Jurusan Teknik Informatika Universitas 17 Agustus 1945. Surabaya; 2018.
11. Bobi K, Arief U. Pengaruh Variasi Suhu Laminating Waktu Ultrasonic Cleaning. Kecepatan Rotasi Spin Coating Terhadap Karakterisasi Organic Light Emitting Diode (OLED). Jurnal Teknologi Terapan. 2019; 5(2): 72-77.
12. Vishay. Module OLED-128O064D-BPP3N00000. Vishay Intertechnology; 2016.
13. Prio H. Sistem Kendali Alat Elektronika Menggunakan Mikrokontroler Arduino Uno R3 Dan Ethernet Shield Dengan Antarmuka Berbasis Android. Dinamika Rekayasa. 2018; 14(2).
14. Djafar A. Rancang Bangun Automatic Hand Washing Station dengan Menggunakan Mikrokontroller Arduino Uno R3. Jurnal Pendidikan Matematika dan Sains. 2021; 6(1).
Published
2024-08-28
How to Cite
MAHENDRA PUTRA, A. A. N. Surya; RUPIASIH, Ni Nyoman; SUPARDI, I Wayan. Design Of A Potential Difference Measuring Instrument Using A Capacitive Sensor Based On Atmega328 Microcontroller. BULETIN FISIKA, [S.l.], v. 25, n. 2, p. 229 – 234, aug. 2024. ISSN 2580-9733. Available at: <https://ojs.unud.ac.id/index.php/buletinfisika/article/view/104954>. Date accessed: 02 nov. 2024.