Calibration Method for Capacitive Silver Sensor Based on ATmega328 Microcontroller as a Membrane Potential Difference Measuring Instrument
Abstract
In making a measuring instrument, especially an electronics-based measuring instrument, it is necessary to calibrate the instrument made with a standard instrument while also knowing its measurement characteristics. In this study, a potential difference measuring instrument that was made using a silver capacitive sensor based on an ATmega328 microcontroller was calibrated using a standard reference electrode, namely Hanna HI 5414. The instrument was tested using a chitosan membrane and KCl solution. From the sensor calibration, an equation was found, namely Y = 0.9935 X + 0.0001 and has been converted to the ATmega328 microcontroller. The test results show that the accuracy of the measuring instrument reaches 99.82% with a measurement time of ± 3900 s faster than the standard instrument.
Downloads
References
[2] N. N. Rupiasih, M. Sumadiyasa, I. K. Putra, M. N. Rasmini, Studi Sifat Transportasi Membran Kitosan pada Berbagai Jenis Elektrolit, Jurnal Matematika dan Sains, vol. 50, no. 2, 2018, pp. 182-191.
[3] T. Tsuchiya dan H. Funabashi, Akselerometer SOI Kapasitif Diferensial sumbu Z dengan Elektroda Sisir Vertikal, Jurnal Fisika, vol. 116, no. 3, 2020, pp. 378-383.
[4] E. B. Cahyono, Supriyadi, A. Rofiq, Karakteristik Sensor Kapasitif Pelat Sejajar Dalam Aplikasinya Sebagai Instrument Pengukur Curah Hujan Berbasis Arduino Uno, Jurnal of Applied Physics, vol. 7, no. 2, 2020, pp. 97-106.
[5] H. Tritiyatma, Analisis Konsep Alternatif Siswa tentang Larutan Elektrolit dan Non Elektrolit Menggunakan Tes Diagnostik Dua Tingkat untuk Peningkatan Pengajaran Kimia, Jurnal Universal Penelitian Pendidikan, vol. 8, no. 5, 2020, pp. 1926-1934.
[6] N. A. Santi dan M. Rahayu, Analisis Miskonsepsi Siswa pada Materi Larutan Elektrolit dan Non Elektrolit Menggunakan Instrument Multirepresentasi Four-tier Diagnostic Test Berbasis Piktorial, Journal of Chemistry Education, vol. 11, no. 3, 2022, pp. 210-219.
[7] W. W. Ardi, A. W. Indrawati, W. A. Prastya, I. K Darminta, G. N. Sangka, A. Sapteka, Perbandingan Kinerja Arduino Uno dan ESP32 Terhadap Pengukuran Arus dan Tegangan, Jurnal Otomasi, Kontrol & Instrumentasi, vol. 13, no, 1, 2021, pp. 2085-2517.
[8] T. S. Sulaksono, P. Sukmabuana, N. Nagara, Microcontroller ATMega328P Timer/Counter for Single Channel Gamma Spectroscopy, Jurnal Teknologi Reaktor Nuklir, vol. 24, no. 3, 2022, pp. 125-130.
[9] C. Leonardo, Suraidi, H. Tanudjaya, Analisis Kalibrasi Pengukuran Dan Ketidakpastian Sound Level Meter, Jurnal tknik Insdutri, vol. 8, no. 1, 2021, pp. 46-53.
[10] R. A. Prasetyo & Helma, Analisis Regresi Linear Berganda Untuk Melihat Faktor Yang Berpengaruh Terhadap Kemiskinan di Provinsi Sumatera Barat, Journal of Mathematic UNP, vol. 7, no. 2, 2022, pp. 62-98.
[11] A. Pandia, W. Sumarni, A. R. Izzania, Pengembangan Alat Peraga Uji Daya Hantar Listrik Berbasis STEM dan Pengaruhnya Terhadap Literasi Kimia, Journal of Chemistry Education, vol. 10, no. 1, 2021, pp. 30-36.
[12] C. A. Miranda dan Afrida, Kuat Arus Yang Dihasilkan Dari Fermentasi Ekstrak Belimbing Wuluh, Jurnal Phi, vol. 3, no. 1, 2020, pp. 18-21.
[13] R. F. Bobu, Respon Potensial Membran Sel Telur Ikan Nila (Oreochromis Nilocitus) Akibat Terkontaminasi Timbal (Pb), Jurnal Pendidikan Fisika, vol. 7, no. 1, 2022, pp. 30-35.