STRATEGI UNTUK MENINGKATKAN KUALITAS OBAT BIOLOGI PADA SEL MAMALIA CHINESE HAMSTER OVARY (CHO) : SUATU KAJIAN PUSTAKA
Abstract
Chinese hamster ovary (CHO) cells are essential cells frequently used to produce biopharmaceutical molecules, especially glycoproteins. Nevertheless, to obtain an efficient production process and effective therapeutic consistency, the right strategy is needed to improve the quality of biological drug products. It is known that all the critical molecules involved in the immune response are glycoproteins, and many therapeutic proteins, such as vaccines, antibodies, and enzymes, require glycans to have total biologic activity. This review discusses the strategy used in CHO cells to modulate sialylation patterns through overexpression of sialyltransferases, CMP-sialic acid transporter, UDP-GlcNAc 2-epimerase (GNE), ManNAc kinase (MNK), and other related enzymes. In addition to modulating biosynthetic pathways to increase sialic acid content with gene overexpression techniques, this review includes methods for inserting glycosylation sites and manipulating glycans to produce the desired glycoforms. An approach through protein fusion techniques with Fc molecules from human IgG is also discussed to increase the protein half-life. Finally, as a strategy to improve the quality of biopharmaceutical molecules, this review also discusses the importance of cell monoclonalization in developing a cell line that truly originates from a single clone. This is a very critical step to obtain batch to batch consistency during the production process of a biopharmaceutical molecule.
Downloads
References
Bi, J. X., Shuttleworth, J., and Al‐Rubeai, M. 2004. Uncoupling of cell growth and proliferation results in enhancement of productivity in p21CIP1‐arrested CHO cells. Biotechnology and bioengineering. 85(7): 741-749.
Costa, A. R., Rodrigues, M. E., Henriques, M., Oliveira, R., and Azeredo, J. (2011, December). Strategies for adaptation of mAb-producing CHO cells to serum-free medium. In BMC proceedings. Vol. 5: No. 8, pp. 1-2.
Czajkowsky, D. M., Hu, J., Shao, Z., and Pleass, R. J. 2012. Fc‐fusion proteins: new developments and future perspectives. EMBO molecular medicine. 4(10): 1015-1028.
Davis, J. D., Deng, R., Boswell, C. A., Zhang, Y., Li, J., Fielder, P., and Kenkare-Mitra, S. 2013. Monoclonal antibodies: from structure to therapeutic application. Pharmaceutical Biotechnology: Fundamentals and Applications. 143-178.
Deer, J. R., and Allison, D. S. 2004. High‐level expression of proteins in mammalian cells using transcription regulatory sequences from the Chinese hamster EF‐1α gene. Biotechnology progress. 20(3): 880-889.
Duivelshof, B. L., Murisier, A., Camperi, J., Fekete, S., Beck, A., Guillarme, D., and D'Atri, V. 2021. Therapeutic Fc‐fusion proteins: current analytical strategies. Journal of separation science. 44(1): 35-62.
Egrie, J. C., and Browne, J. K. 2001 Development and characterization of novel erythropoiesis stimulating protein (NESP). British journal of cancer. 84(1): 3-10.
Enns, G. M., Seppala, R., Musci, T. J., Weisiger, K., Ferrell, L. D., Wenger, D. A., and Packman, S. 2001 Clinical course and biochemistry of sialuria. Journal of inherited metabolic disease. 24(3): 328-336.
Fan, Y., Andersen, M. R., and Weilguny, D. 2015. N-Glycosylation optimization of recombinant antibodies in CHO cell through process and metabolic engineering. Technical University of Denmark.
Fares, F., Ganem, S., Hajouj, T., and Agai, E. 2007. Development of a long-acting erythropoietin by fusing the carboxyl-terminal peptide of human chorionic gonadotropin β-subunit to the coding sequence of human erythropoietin. Endocrinology. 148(10): 5081-5087.
Ferreira, H., Seppala, R., Pinto, R., Huizing, M., Martins, E., Braga, A. C., and Gahl, W. A. 1999. Sialuria in a Portuguese girl: clinical, biochemical, and molecular characteristics. Molecular genetics and metabolism. 67(2): 131-137.
Food and Drug Administration (FDA). 2018. Biological Product Definitions. https://www.fda.gov/files/drugs/published/Biological-Product-Definitions.pdf
Fukuta, K., Yokomatsu, T., Abe, R., Asanagi, M., and Makino, T. (2000). Genetic engineering of CHO cells producing human interferon-γ by transfection of sialyltransferases. Glycoconjugate journal. 17: 895-904.
Fussenegger, M., Bailey, J. E., Hauser, H., and Mueller, P. P. 1999. Genetic optimization of recombinant glycoprotein production by mammalian cells. Trends in biotechnology. 17(1): 35-42.
Girod, P. A., Nguyen, D. Q., Calabrese, D., Puttini, S., Grandjean, M., Martinet, D., and Mermod, N. 2007. Genome-wide prediction of matrix attachment regions that increase gene expression in mammalian cells. Nature methods. 4(9): 747-753.
Goh, J. B., and Ng, S. K. 2018. Impact of host cell line choice on glycan profile. Critical Reviews in Biotechnology. 38(6): 851-867.
Gupta, S. K., and Shukla, P. 2016. Advanced technologies for improved expression of recombinant proteins in bacteria: perspectives and applications. Critical reviews in biotechnology. 36(6): 1089-1098.
Gupta, S. K., and Shukla, P. 2017. Microbial platform technology for recombinant antibody fragment production: a review. Critical reviews in microbiology. 43(1): 31-42.
Hossler, P., Khattak, S. F., and Li, Z. J. 2009. Optimal and consistent protein glycosylation in mammalian cell culture. Glycobiology. 19(9): 936-949.
Hu, Z., Guo, D., Yip, S. S., Zhan, D., Misaghi, S., Joly, J. C., and Shen, A. Y. 2013. Chinese hamster ovary K1 host cell enables stable cell line development for antibody molecules which are difficult to express in DUXB11‐derived dihydrofolate reductase deficient host cell. Biotechnology Progress. 29(4): 980-985.
Jaakkonen, A., Volkmann, G., and Iwaï, H. 2020. An off-the-shelf approach for the production of fc fusion proteins by protein trans-splicing towards generating a lectibody In Vitro. International Journal of Molecular Sciences. 21(11): 4011.
Jayapal, K. P., Wlaschin, K. F., Hu, W. S., and Yap, M. G. 2007. Recombinant protein therapeutics from CHO cells-20 years and counting. Chemical engineering progress. 103(10): 40.
Jonathan, S., 2015. Bacterial modulation of host glycosylation - in infection, biotechnology, and therapy. Dissertation. Lund University, Sweden.
Jones, T. D., Hanlon, M., Smith, B. J., Heise, C. T., Nayee, P. D., Sanders, D. A., and Baker, M. P. 2004. The development of a modified human IFN-α2b linked to the Fc portion of human IgG1 as a novel potential therapeutic for the treatment of hepatitis C virus infection. Journal of Interferon and Cytokine Research. 24(9): 560-572.
Kaufman, R. J., and Sharp, P. A. (1982). Amplification and expression of sequences cotransfected with a modular dihydrofolate reductase complementary DNA gene. Journal of molecular biology. 159(4): 601-621.
Kobata, A. (1992). Structures and functions of the sugar chains of glycoproteins. European Journal of Biochemistry. 209(2): 483-501.
Kunert, R., and Reinhart, D. 2016. Advances in recombinant antibody manufacturing. Applied microbiology and biotechnology. 100: 3451-3461.
Kwak, C. Y., Park, S. Y., Lee, C. G., Okino, N., Ito, M., and Kim, J. H. 2017. Enhancing the sialylation of recombinant EPO produced in CHO cells via the inhibition of glycosphingolipid biosynthesis. Scientific reports. 7(1): 13059.
Langer, E. S. 2011. Trends in perfusion bioreactors: the next revolution in bioprocessing. BioProcess Int. 9(10): 18-22.
Meuris, L., Santens, F., Elson, G., Festjens, N., Boone, M., Dos Santos, A., and Callewaert, N. 2014. GlycoDelete engineering of mammalian cells simplifies N-glycosylation of recombinant proteins. Nature biotechnology. 32(5): 485-489.
Mitoma, H., Horiuchi, T., Tsukamoto, H., and Ueda, N. 2018. Molecular mechanisms of action of anti-TNF-α agents–Comparison among therapeutic TNF-α antagonists. Cytokine. 101: 56-63.
Molecular Devices (2023). Monoclonality. https://www.moleculardevices.com/applications/monoclonality
Ohtsubo, K., and Marth, J. D. 2006. Glycosylation in cellular mechanisms of health and disease. Cell. 126(5): 855-867.
Omasa, T., Onitsuka, M., and Kim, W. D. 2010. Cell engineering and cultivation of Chinese hamster ovary (CHO) cells. Current pharmaceutical biotechnology. 11(3): 233-240.
Pierce, J. G., and Parsons, T. F. 1981. Glycoprotein hormones: structure and function. Annual review of biochemistry. 50(1): 465-495.
Qureshi, H. K., Veeresham, C., and Srinivas, C. 2021. Analytical Method Development and Validation of Etanercept by UV and RP-UFLC Methods. American Journal of Analytical Chemistry. 12(12): 493-505.
Reinke, S. O., Lehmer, G., Hinderlich, S., and Reutter, W. 2009. Regulation and pathophysiological implications of UDP-GlcNAc 2-epimerase/ManNAc kinase (GNE) as the key enzyme of sialic acid biosynthesis.
Sam, N. T., Misaki, R., Ohashi, T., and Fujiyama, K. 2018. Enhancement of glycosylation by stable co-expression of two sialylation-related enzymes on Chinese hamster ovary cells. Journal of bioscience and bioengineering. 126(1): 102-110.
Sanders, P. G., and Wilson, R. H. 1984. Amplification and cloning of the Chinese hamster glutamine synthetase gene. The EMBO Journal. 3(1): 65-71.
Santoso, A., Septisetyani, E. P., Ramadani, R. D., Rubiyana, Y., Prasetyaningrum, P. W., Wisnuwardhani, P. H., and Nuraini, N. 2022. Glycoengineering of Darbepoetin-α in CHO-DG44 Cells through Overexpression of α-2, 3-sialyl-transferase and CMP-sialic Acid Transporter. HAYATI Journal of Biosciences. 29(2): 204-213.
Schroeder Jr, H. W., and Cavacini, L. 2010. Structure and function of immunoglobulins. Journal of allergy and clinical immunology. 125(2): S41-S52.
Sinclair, A. M., and Elliott, S. 2005. Glycoengineering: the effect of glycosylation on the properties of therapeutic proteins. Journal of pharmaceutical sciences. 94(8): 1626-1635.
Son, Y. D., Jeong, Y. T., Park, S. Y., and Kim, J. H. 2011. Enhanced sialylation of recombinant human erythropoietin in Chinese hamster ovary cells by combinatorial engineering of selected genes. Glycobiology. 21(8): 1019-1028.
Stäsche, R., Hinderlich, S., Weise, C., Effertz, K., Lucka, L., Moormann, P., and Reutter, W. 1997. A Bifunctional Enzyme Catalyzes the First Two Steps in N-Acetylneuraminic Acid Biosynthesis of Rat Liver. Journal of Biological Chemistry. 272(39): 24319-24324.
Takagi, Y., Yamazaki, T., Masuda, K., Nishii, S., Kawakami, B., and Omasa, T. 2017. Identification of regulatory motifs in the CHO genome for stable monoclonal antibody production. Cytotechnology. 69: 451-460.
Tripathi, N. K., and Shrivastava, A. 2019. Recent developments in bioprocessing of recombinant proteins: expression hosts and process development. Frontiers in bioengineering and biotechnology. 7: 420.
Urlaub, G., and Chasin, L. A. 1980. Isolation of Chinese hamster cell mutants deficient in dihydrofolate reductase activity. Proceedings of the National Academy of Sciences. 77(7): 4216-4220.
Varki, A. 2011. Evolutionary forces shaping the Golgi glycosylation machinery: why cell surface glycans are universal to living cells. Cold Spring Harbor perspectives in biology. 3(6): a005462.
Wang H, Du Y, Zhang R, Xu J, Liu L, United States Patent, Patent No : US 11,279,742 B2, Date of Patent 22 Maret 2022.
Wang, Q., Yin, B., Chung, C. Y., and Betenbaugh, M. J. 2017. Glycoengineering of CHO cells to improve product quality. Heterologous Protein Production in CHO Cells: Methods and Protocols. 25-44.
Wippermann, A., Rupp, O., Brinkrolf, K., Hoffrogge, R., and Noll, T. 2015. The DNA methylation landscape of Chinese hamster ovary (CHO) DP-12 cells. Journal of biotechnology. 199: 38-46.
Wong, N. S., Yap, M. G., and Wang, D. I. 2006. Enhancing recombinant glycoprotein sialylation through CMP‐sialic acid transporter overexpression in Chinese hamster ovary cells. Biotechnology and bioengineering. 93(5): 1005-1016.
Yang, Z., Wang, S., Halim, A., Schulz, M. A., Frodin, M., Rahman, S. H., and Clausen, H. 2015. Engineered CHO cells for production of diverse, homogeneous glycoproteins. Nature biotechnology. 33(8): 842-844.
Yehuda, S., and Padler-Karavani, V. 2020. Glycosylated biotherapeutics: immunological effects of N-glycolylneuraminic acid. Frontiers in immunology. 11: 21.
Zhang, Y., Katakura, Y., Ohashi, H., and Shirahata, S. 1997. Efficient and inducible production of human interleukin 6 in Chinese hamster ovary cells using a novel expression system. Cytotechnology. 25(1-3): 53-60.
This work is licensed under a Creative Commons Attribution 4.0 International License.