Perbandingan Tingkat Pengenalan Citra Diabetic Retinopathy Pata Kombinasi Priciple Component Dari 4 Ciri Berbasis Metode SVM (Support Vector Machine)

  • Sari Ayu Wulandari
  • Rudy Tjahyono Universitas Dian Nuswantoro
  • Dian Retno Sawitri Universitas Dian Nuswantoro

Abstract

Abstract— Pattern recoqnition methods for image of diabetic retinopaty are influenced by differences in pigmentation. To help diabetic retinopathy image recognition is required a software. This paper presents the results of research on pattern recognition image of diabetic retinopathy,This study used the image of the yellow canal with Gabor filter.Characteristics that are taken from each image is characteristic of the mean,
variance, skewness and entropy, followed by feature extraction with PCA (Principle Component Analysis).At PCA feature extraction, square matrix whose number of columns equal to the number of features is  enerated.There are four features used. These features are 4 PCs (Principle Component), ie, PC1, PC2, PC3 and PC4.From the combination of these features, we obtained six pairs that consist of two traits. By using a linear model of SVM will been selected the pair with the highest accuracy value. Based on the analysis, we obtained a couple PC1and PC2 models that have the highest levels of learning (100%) and the fastest recognition time, which is explicitly indicated by the smallest amount of support vector.

Downloads

Download data is not yet available.

Author Biographies

Rudy Tjahyono, Universitas Dian Nuswantoro
Program Studi Teknik Industri, Fakultas Teknik
Dian Retno Sawitri, Universitas Dian Nuswantoro
Program Studi Teknik Elektro, Fakultas Teknik

References

[1] American, 2010. “Evidence-Based Practice Guideline, Care of the Patient with Diabetes Mellitus,”.
[2] Haniza Yazid; Hamzah Arof; Hazlita Mohd.Isa.“Automated Identification of Exudates and Optic Disc Based on Inverse Surface Thresholding”, Journal Medicine System, LLC 2011 .
[3] Ulinuha M;Purnama I; Hariadi M. 2010.“Segmentasi Optic Disk Pada Penderita Diabetic Retinopathy Menggunakan GVF Snake”.
[4] Ahmed Wasif Reza; C.Eswaran, Subhas Hati. “Automatic Tracing of Optic Disc and Exudates From Color Fundus Image Using Fixed and Variable Thresholds”, Journal Medicine System, Springer Science, LLC 2008.
[5] Wei Bu; Xiangqian Wu; Xiang Chen; Baisheng Dai; Yalin Zheng. “Hierarchical Detection of Hard Exudates in Color Retinal Images”, Journal of Software, Vol.8, No.11, November 2013, pp. 2723 – 2732.
[6] Flavio Araujo; Rodrigo Veras; Andre Macedo; Fatima Medeiros.“Automatic Detection of Exudate in Retinal Images Using Neural Network” 2011.
[7] Brigitta Nagy; Balazs Harangi; Balint Antal; Andras Hajdu.“Ensemble-based Exudate Detection in Color Fundus Image”, 7th International Symposium on Image and Signal Processing and Analysis (ISPA), Dubrovnik, Croatia, September 2011.
[8] S.Fowjiya. Dr.M.karnan. Mr.R.Sivakumar.2013.An Automatic Detection and Assessment of Diabetic Macular Edema Along With Fovea Detection from Color Retinal Images. International Journal of Computer Trends and Technology (IJCTT) - volume4Issue4 –April 2013
[9] M. Usman Akram, Shehzad Khalid, Anam Tariq, M. Younas Javed, 2013. “Detection of Neovascularization in Retinal Images using Multivariate m-Mediods based Classifier”, Elsevier Journal of Computerized Medical Imaging and Graphics
[10] Siva Sundhara Raja, S.Vasuki, Rajesh Kumar.2014. Performance Analysis Of Retinal Image Blood Vessel Segmentation. Advanced Computing: An International Journal (ACIJ), Vol.5, No.2/3
[11] A. S. Jadhav dan Pushpa B. Patil. 2015. Classification Of Diabetes Retina Images Using Blood Vessel Area. International Journal on Cybernetics & Informatics (IJCI) Vol. 4, No. 2
[12] A.Osareh Dan B. Shadgar. 2009. Automatic Blood Vessel Segmentation In Color Images Of Retina. Iranian Journal of Science & Technology, Transaction B, Engineering, Vol. 33, No. B2, pp 191-206
[13] Nilanjan Dey, Anamitra Bardhan Roy, Moumita Pal,Achintya Das. 2012. FCMBased Blood Vessel Based Blood Vessel Based Blood Vessel
[14] Segmentation Method for Retinal Images. International Journal of Computer Science and Network (IJCSN).Volume 1, Issue 3
[15] Adithya Kusuma Whardana dan Nanik Suciati. . 2014. A Simple Method for Optic Disk Segmentation.from Retinal Fundus Image.. I.J. Image, Graphics and Signal Processing, 2014, 11, 36-42
Published
2016-06-25
How to Cite
WULANDARI, Sari Ayu; TJAHYONO, Rudy; SAWITRI, Dian Retno. Perbandingan Tingkat Pengenalan Citra Diabetic Retinopathy Pata Kombinasi Priciple Component Dari 4 Ciri Berbasis Metode SVM (Support Vector Machine). Majalah Ilmiah Teknologi Elektro, [S.l.], v. 15, n. 1, p. 95-102, june 2016. ISSN 2503-2372. Available at: <https://ojs.unud.ac.id/index.php/mite/article/view/20859>. Date accessed: 19 nov. 2024. doi: https://doi.org/10.24843/MITE.2016.v15i01p17.

Keywords

Kanal Kuning, SVM, diabetic retinopathy, PCA