Pengaruh Ketergantungan Nikotin Terhadap Kadar Trigliserida Pada Perokok yang Terdiagnosis Hipertensi
Abstract
Cardiovascular disease was one of the leading causes of world death. Cardiovascular disease accounts for 35% of total deaths in Indonesia. People who smoke have a greater risk of developing cardiovascular disease because smoking lead to an increase of lipolysis and triglyceride levels. The triglycerides levels are an early marker of increasing remnant cholesterol that caused cardiovascular disease.
This research is an analytic observational study with a cross-sectional approach which was conducted on 31 hypertensive male smokers. The purpose of this study was to determine the effect of nicotine dependence on triglyceride levels as an early marker of increased cardiovascular risk. Nicotine dependency was analyzed using Fagerstorm Test for Nicotine Dependence (FTND). The effect of the nicotine dependence on triglyceride levels was analyzed using Fisher's test so that the odds ratio and p-value were obtained.
The results showed that respondents with high nicotine dependence seems to had a higher risk of increasing triglyceride levels above the normal limit 0,333 times (OR 0,333; 95% CI 0,051-2,177) greater than low nicotine dependence although not statistically significant (p-value 0,370).
Downloads
References
Andersson, K., & Arner, P. (2001). Systemic nicotine stimulates human adipose tissue lipolysis through local cholinergic and catecholaminergic receptors. International Journal of Obesity, 25(8), 1225–1232. https://doi.org/10.1038/sj.ijo.0801654
AR, D., & Indrawan, B. (2014). Hubungan Usia dan Merokok pada Penderita Penyakit Jantung Koroner di Poli Penyakit Dalam RS MHPalembang Periode Tahun 2012. Syifa’ MEDIKA: Jurnal Kedokteran Dan Kesehatan, 5(1), 16. https://doi.org/10.32502/sm.v5i1.1420
Arjoso, S. (2020). ATLAS TEMBAKAU INDONESIA 2020. www.tcsc-Indonesia.org
Badan Penelitian dan Pengembangan Kesehatan. (2019). Laporan Nasional RISKESDAS 2018.
Bajaj, M. (2012). Nicotine and Insulin Resistance: When the Smoke Clears. Diabetes, 61, 3078–3080. https://doi.org/10.2337/db12-1100
Benowitz, N. L., & Burbank, A. D. (2016). Cardiovascular toxicity of nicotine: Implications for electronic cigarette use. In Trends in Cardiovascular Medicine (Vol. 26, Issue 6, pp. 515–523). Elsevier Inc. https://doi.org/10.1016/j.tcm.2016.03.001
Benowitz, N. L., Pomerleau, O. F., Pomerleau, C. S., & Jacob, P. (2003). Nicotine metabolite ratio as a predictor of cigarette consumption. Nicotine & Tobacco Research : Official Journal of the Society for Research on Nicotine and Tobacco, 5(5), 621–624. https://doi.org/10.1080/1462220031000158717
Bentzon, J. F., Otsuka, F., Virmani, R., & Falk, E. (2014). Mechanisms of plaque formation and rupture. Circulation Research, 114(12), 1852–1866. https://doi.org/10.1161/CIRCRESAHA.114.302721
Centers for Disease Control and Prevention. (n.d.). Behavioral Risk Factor Surveillance System. Retrieved December 13, 2021, from https://www.cdc.gov/brfss
Cnop, M., Havel, P. J., Utzschneider, K. M., Carr, D. B., Sinha, M. K., Boyko, E. J., Retzlaff, B. M., Knopp, R. H., Brunzell, J. D., & Kahn, S. E. (2003). Relationship of adiponectin to body fat distribution, insulin sensitivity and plasma lipoproteins: Evidence for independent roles of age and sex. Diabetologia, 46(4), 459–469. https://doi.org/10.1007/s00125-003-1074-z
Cohen, J. D., Cziraky, M. J., Cai, Q., Wallace, A., Wasser, T., Crouse, J. R., & Jacobson, T. A. (2010). 30-year trends in serum lipids among united states adults: Results from the national health and nutrition examination surveys II, III, and 19992006. American Journal of Cardiology, 106(7), 969–975. https://doi.org/10.1016/j.amjcard.2010.05.030
Daud, A., Shahadan, S. Z., Ibrahim, M., Lokman Md Isa, M., & Deraman, S. (2018). Prevalence and association between triglyceride level and lifestyle factors among Malay obese class I and II adults. Enfermería Clínica, 28, 310–315. https://doi.org/10.1016/S1130-8621(18)30176-1
Dipiro, J., Talbert, R., Yee, G., Matzke, G., Wells, B., & Posey, L. (2011). Pharmacotherapy: Pathophysiologic Approach.
Fix, B. V., O’Connor, R. J., Benowitz, N., Heckman, B. W., Cummings, K. M., Fong, G. T., & Thrasher, J. F. (2017). Nicotine Metabolite Ratio (NMR) Prospectively Predicts Smoking Relapse: Longitudinal Findings From ITC Surveys in Five Countries. Nicotine & Tobacco Research, 19(9), 1040. https://doi.org/10.1093/NTR/NTX083
Fox, C. S., Massaro, J. M., Hoffmann, U., Pou, K. M., Maurovich-Horvat, P., Liu, C. Y., Vasan, R. S., Murabito, J. M., Meigs, J. B., Cupples, L. A., D’Agostino, R. B., & O’Donnell, C. J. (2007). Abdominal visceral and subcutaneous adipose tissue compartments: association with metabolic risk factors in the Framingham Heart Study. Circulation, 116(1), 39–48. https://doi.org/10.1161/CIRCULATIONAHA.106.675355
Gossett, L. K., Johnson, H. M., Piper, M. E., Fiore, M. C., Baker, T. B., & Stein, J. H. (2009). Smoking Intensity and Lipoprotein Abnormalities in Active Smokers. Journal of Clinical Lipidology, 3(6), 372. https://doi.org/10.1016/J.JACL.2009.10.008
Ho, M. K., Mwenifumbo, J. C., Al Koudsi, N., Okuyemi, K. S., Ahluwalia, J. S., Benowitz, N. L., & Tyndale, R. F. (2009). Association of nicotine metabolite ratio and CYP2A6 genotype with smoking cessation treatment in African-American light smokers. Clinical Pharmacology and Therapeutics, 85(6), 635–643. https://doi.org/10.1038/CLPT.2009.19
Hukkanen, J., Jacob, P., & Benowitz, N. L. (2005). Metabolism and disposition kinetics of nicotine. In Pharmacological Reviews (Vol. 57, Issue 1, pp. 79–115). Pharmacol Rev. https://doi.org/10.1124/pr.57.1.3
Ito, T., Tsuji, M., Mori, Y., Kanda, H., Hidaka, T., Kakamu, T., Kumagai, T., Hayakawa, T., Osaki, Y., & Fukushima, A. T. (2015). EFFECT OF CYP2A6*4 GENETIC POLYMORPHISMS ON SMOKING BEHAVIORS AND NICOTINE DEPENDENCE IN A GENERAL POPULATION OF JAPANESE MEN. Fukushima Journal of Medical Science, 61(2), 125–130. https://doi.org/10.5387/FMS.2015-14
James, P. A., Oparil, S., Carter, B. L., Cushman, W. C., Dennison-Himmelfarb, C., Handler, J., Lackland, D. T., LeFevre, M. L., MacKenzie, T. D., Ogedegbe, O., Smith, S. C., Svetkey, L. P., Taler, S. J., Townsend, R. R., Wright, J. T., Narva, A. S., & Ortiz, E. (2014). 2014 Evidence-based guideline for the management of high blood pressure in adults: Report from the panel members appointed to the Eighth Joint National Committee (JNC 8). In JAMA (Vol. 311, Issue 5, pp. 507–520). American Medical Association. https://doi.org/10.1001/jama.2013.284427
Johani, F. H., Majid, M. S. A., Azme, M. H., & Nawi, A. M. (2020). Cytochrome P450 2A6 whole-gene deletion (CYP2A6*4) polymorphism reduces risk of lung cancer: A meta-analysis. Tobacco Induced Diseases, 18. https://doi.org/10.18332/TID/122465
Koda, M., Kitamura, I., Okura, T., Otsuka, R., Ando, F., & Shimokata, H. (2016). The associations between smoking habits and serum triglyceride or hemoglobin A1c levels differ according to visceral fat accumulation. Journal of Epidemiology, 26(4), 208–215. https://doi.org/10.2188/jea.JE20150086
Lee, W., Hwang, S. H., Choi, H., & Kim, H. (2017). The association between smoking or passive smoking and cardiovascular diseases using a Bayesian hierarchical model: based on the 2008-2013 Korea Community Health Survey. Epidemiology and Health, 39, e2017026. https://doi.org/10.4178/epih.e2017026
Liu, T., David, S. P., Tyndale, R. F., Wang, H., Yu, X. Q., Chen, W., Zhou, Q., & Chen, W. Q. (2012). Relationship between amounts of daily cigarette consumption and abdominal obesity moderated by CYP2A6 genotypes in chinese male current smokers. Annals of Behavioral Medicine, 43(2), 253–261. https://doi.org/10.1007/s12160-011-9318-5
Loh, R., Stamatakis, E., Folkerts, D., Allgrove, J. E., & Moir, H. J. (2020). Effects of Interrupting Prolonged Sitting with Physical Activity Breaks on Blood Glucose, Insulin and Triacylglycerol Measures: A Systematic Review and Meta-analysis. Sports Medicine (Auckland, N.Z.), 50(2), 295–330. https://doi.org/10.1007/S40279-019-01183-W
Matsuzawa, Y., Nakamura, T., Shimomura, I., & Kotani, K. (1995). Visceral Fat Accumulation and Cardiovascular Disease. Obesity Research, 3(5 S), 645S-647S. https://doi.org/10.1002/j.1550-8528.1995.tb00481.x
Miller, M., Stone, N. J., Ballantyne, C., Bittner, V., Criqui, M. H., Ginsberg, H. N., Goldberg, A. C., Howard, W. J., Jacobson, M. S., Kris-Etherton, P. M., Lennie, T. A., Levi, M., Mazzone, T., & Pennathur, S. (2011). Triglycerides and cardiovascular disease: A scientific statement from the American Heart Association. Circulation, 123(20), 2292–2333. https://doi.org/10.1161/CIR.0b013e3182160726
Moradinazar, M., Pasdar, Y., Najafi, F., Shahsavari, S., Shakiba, E., Hamzeh, B., & Fakhri, N. (2020). Association between dyslipidemia and blood lipids concentration with smoking habits in the Kurdish population of Iran. BMC Public Health, 20(1). https://doi.org/10.1186/S12889-020-08809-Z
Mwenifumbo, J. C., al Koudsi, N., Man, K. H., Zhou, Q., Hoffmann, E. B., Sellers, E. M., & Tyndale, R. F. (2008). Novel arid established CYP2A6 alleles impair in vivo nicotine metabolism in a population of black African descent. Human Mutation, 29(5), 679–688. https://doi.org/10.1002/humu.20698
Nath, M. C., Rahman, A. S., Nath, M. C., Dutta, A., Khan, Z. H., Ghosh, E., Akhter, S., MS, I., S, S., R, B., & MM, R. (2022). The Effect of Cigarette Smoking on Fasting Lipid Profile: A Single Center Study. Fortune Journal of Health Sciences, 5(2), 363–373. https://doi.org/10.26502/fjhs.067
NCBI. (n.d.). CYP2A6 cytochrome P450 family 2 subfamily A member 6 (Homo sapiens (human)). Retrieved June 1, 2021, from https://www.ncbi.nlm.nih.gov/gene/1548
Nordestgaard, B. G., & Varbo, A. (2014). Triglycerides and cardiovascular disease. The Lancet, 384(9943), 626–635. https://doi.org/10.1016/S0140-6736(14)61177-6
Patel, J., Sharma, T., Allan, C., & Curnew, G. (2021). Use of Lifestyle Modifications for Management of a Patient with Severely High Total Cholesterol (> 14 mmol/L) and Triglycerides (> 40 mmol/L). Journal of Lifestyle Medicine, 11(1), 43. https://doi.org/10.15280/JLM.2021.11.1.43
Patramurti, C., . S., Nurrochmad, A., & Martono, S. (2015). Polymorphism of Cytochrome P450 2a6 (Cyp2a6*1 and Cyp2a6*4) Among Javanese Indonesian Smoker and Non Smoker. Indonesian Journal of Pharmacy, 26(1), 11. https://doi.org/10.14499/indonesianjpharm26iss1pp11
Patramurti, C., & Fenti. (2017). Studi Genotipe Sitokrom P450 2A6 Alel CYP2A6 * 4 dan CYP2A6 * 9 pada Subyek Uji Perokok Suku Jawa Indonesia ( Genotyping Study of Cytochrome P450 2A6 Alel CYP2A6 * 1 and CYP2A6 * 9 among Javanese Indonesian Smokers ). Jurnal Ilmu Kefarmasian Indonesia, 15(1), 50–56.
Picciotto, M. R., & Kenny, P. J. (2021). Mechanisms of Nicotine Addiction. Cold Spring Harbor Perspectives in Medicine, 11(5), a039610. https://doi.org/10.1101/CSHPERSPECT.A039610
Pracilia, P. C. S., Nelwan, J. E., & Langi, F. F. L. G. (2019). Hubungan Antara Kebiasaan Merokok Dengan Kejadian Penyakit Jantung Koroner Pada Pasien Yang Berkunjung Di Instalasi Cardiovascular And Brain Centre (CVBC) RSUP Prof. dr. R. D. Kandau Manado. Jurnal KESMAS, 7(4), 1–6.
Price, L. R., Martinez, J., & Mayer, B. (2020). carcinogenic and reproductive effects of nicotine exposure : A narrative review of the scientific literature [version 2; peer review: 2 approved, 1 not approved]. F1000Research, 8, 1586.
Rashan, M. A. A., Dawood, O. T., Akram, H., Razzaq, A., & Hassali, M. A. (2016). The Impact of Cigarette Smoking on Lipid Profile among Iraqi Smokers. International Journal of Collaborative Research on Internal Medicine & Public Health, 8(8), 491–500. https://internalmedicine.imedpub.com/the-impact-of-cigarette-smoking-on-lipid-profile-among-iraqi-smokers.php?aid=10498
Rigotti, N. A., & Clair, C. (2013). Managing tobacco use: The neglected cardiovascular disease risk factor. In European Heart Journal (Vol. 34, Issue 42, pp. 3259–3267). https://doi.org/10.1093/eurheartj/eht352
Saesarwati, D., & Satyabakti, P. (2017). ANALISIS FAKTOR RISIKO YANG DAPAT DIKENDALIKAN PADA KEJADIAN PJK USIA PRODUKTIF. Jurnal PROMKES, 4(1), 22. https://doi.org/10.20473/jpk.v4.i1.2016.22-33
Schnoll, R. A., George, T. P., Hawk, L., Cinciripini, P., Wileyto, P., & Tyndale, R. F. (2014). The Relationship between the Nicotine Metabolite Ratio and Three Self-Report Measures of Nicotine Dependence Across Sex and Race. Psychopharmacology, 231(12), 2515. https://doi.org/10.1007/S00213-013-3421-1
Siegel, S. D., Lerman, C., Flitter, A., & Schnoll, R. A. (2020). The Use of the Nicotine Metabolite Ratio as a Biomarker to Personalize Smoking Cessation Treatment: Current Evidence and Future Directions. Cancer Prevention Research, 13(3), 261–272. https://doi.org/10.1158/1940-6207.CAPR-19-0259
Soetiarto, F. (1995). Mengenal Lebih Jauh Rokok Kretek. Media Litbangkes, V(04), 31–33.
Tiwari, R. K., Sharma, V., Pandey, R. K., & Shukla, S. S. (2020). Nicotine Addiction: Neurobiology and Mechanism. Journal of Pharmacopuncture, 23(1), 1. https://doi.org/10.3831/KPI.2020.23.001
World Health Organization. (2018). NCDs Country Profiles : Indonesia. 224. https://www.who.int/nmh/publications/ncd-profiles-2018/en/