IN SILICO STUDY OF Hibiscus Sabdariffa Linn. ACTIVE COMPOUNDS IN GLP-1R: POTENTIAL AS ANTIDIABETIC DRUG

  • T. Andriani Department of Medical Physiology and Biophysics, Faculty of Medicine, Universitas Indonesia, Jakarta 10430, Indonesia
  • N. Mawaddah Universitas Indonesia
  • L. Erlina Department of Chemistry, Faculty of Medicine, Universitas Indonesia, Jakarta 10430, Indonesia
  • R. K. Anggraeni Master’s Program in Biomedical Sciences, Faculty of Medicine, Universitas Indonesia, Jakarta 10430, Indonesia
  • N. Ibrahim Department of Medical Physiology and Biophysics, Faculty of Medicine, Universitas Indonesia, Jakarta 10430, Indonesia
  • M. Siagian Department of Medical Physiology and Biophysics, Faculty of Medicine, Universitas Indonesia, Jakarta 10430, Indonesia

Abstract

        Diabetes mellitus is a metabolic disorder characterized by hyperglycemia due to reduced insulin production and/or insulin resistance. GLP-1 can increase insulin secretion, improve insulin sensitivity, and lower the blood glucose levels by binding to the GLP-1 receptor (GLP-1R). Several plants have been used as antidiabetic drugs. This study aims to see the interactions of the active compounds in Hibiscus sabdariffa Linn. and GLP-1R in silico. The research started with internal validation of the receptor GLP-1 (6ORV), and then the native ligand was docked. The 6ORV receptor validation results have an RMSD value of 2.14Å. The results of docking scores of the 3 best active compounds Hibiscus sabdariffa Linn. are myricetin-3-arabinogalactoside (-10.64 kcal/mol), tetra-O-methyljeediflavanone (-9.95 kcal/mol), and ethyl chlorogenate acid (-7.73 kcal/mol). The amino acids that contribute to the affinity at the active site of the ligand bond with the receptor are Trp 297, Trp 203, Met 204, Phe 230, Try 220, Lys 197. These findings indicate that the active compound Hibiscus sabdariffa Linn. can bind directly to GLP-1R.


Keywords: Diabetes mellitus, Hibiscus sabdariffa Linn., GLP-1R


ABSTRAK


          Diabetes melitus merupakan gangguan metabolisme yang ditandai dengan kondisi hiperglikemia akibat produksi insulin yang berkurang dan atau kondisi resistensi insulin. GLP-1 dapat meningkatkan sekresi, sensitivitas insulin, dan menurunkan kadar glukosa darah dengan cara mengikat reseptor GLP-1 (GLP-1R). Beberapa tanaman telah digunakan sebagai obat antidiabetes. Penelitian ini bertujuan untuk melihat bagaimana interaksi senyawa aktif dalam Hibiscus sabdariffa Linn. terhadap GLP-1R secara in silico. Penelitian dimulai dengan melakukan validasi internal reseptor GLP-1 (6ORV) kemudian dilakukan  proses docking terhadap native ligand. Hasil validasi reseptor 6ORV mempunyai nilai RMSD 2.14Å. Hasil score docking 3 senyawa aktif Hibiscus sabdariffa Linn. terbaik adalah myricetin-3-arabinogalactoside (-10,64 kcal/mol), tetra-O-methyljeediflavanone (-9,95 kcal/mol), dan ethyl chlorogenate acid (-7,73 kcal/mol). Asam amino yang berperan terhadap afinitas pada sisi aktif ikatan ligan dengan reseptor adalah Trp 297, Trp 203, Met 204, Phe 230, Try 220, Lys 197. Temuan ini menunjukkan bahwa senyawa aktif Hibiscus sabdariffa Linn. dapat berikatan langsung dengan GLP-1R.


Kata kunci: Diabetes melitus, Hibiscus sabdariffa Linn., GLP-1R

Downloads

Download data is not yet available.

References

Baggio, L. L., & Drucker, D. J. 2007. Biology of Incretins: GLP-1 and GIP. Gastroenterology. 132(6): 2131–2157. https://doi.org/10.1053/j.gastro.2007.03.054
Biessels, G. J., & Reagan, L. P. 2015. Hippocampal insulin resistance and cognitive dysfunction. Nature Reviews Neuroscience. 16(11): 660–671. https://doi.org/10.1038/nrn4019
Brito, M. A. de. 2011. Pharmacokinetic study with computational tools in the medicinal chemistry course. Brazilian Journal of Pharmaceutical Sciences. 47(4): 797–805. https://doi.org/10.1590/S1984-82502011000400017
Cheng, F., Li, W., Zhou, Y., Shen, J., Wu, Z., Liu, G., Lee, P. W., & Tang, Y. 2012. admetSAR: A Comprehensive Source and Free Tool for Assessment of Chemical ADMET Properties. https://doi.org/10.1021/ci300367a
Cho, Y. M., Fujita, Y., & Kieffer, T. J. 2014. Glucagon-Like Peptide-1: Glucose Homeostasis and Beyond. Annual Review of Physiology. 76(1): 535–559. https://doi.org/10.1146/annurev-physiol-021113-170315
Daniels, D., & Mietlicki-Baase, E. G. 2019. Glucagon-like peptide 1 in the brain: Where is it coming from, where is it going? Diabetes. 68(1): 15–17. https://doi.org/10.2337/dbi18-0045
Domínguez Avila, J. A., Rodrigo García, J., González Aguilar, G. A., & de la Rosa, L. A. 2017. The Antidiabetic Mechanisms of Polyphenols Related to Increased Glucagon-Like Peptide-1 (GLP1) and Insulin Signaling. Molecules. 22(6): 1–16. https://doi.org/10.3390/molecules22060903
Ece, A. 2018. E-Pharmacophore Mapping Combined with Virtual Screening and Molecular Docking to Identify Potent and Selective Inhibitors of P90 Ribosomal S6 Kinase (RSK). Turkish Journal of Pharmaceutical Sciences. 13(2): 241–248. https://doi.org/10.4274/tjps.28290
Faridah, F., Sumaryono, W., Simanjuntak, P., & Triwibowo, R. R. 2021. Analysis of Pancreatic Lipase Inhibitor Activity of Chlorogenic Acid Derivatives in Green Coffee Beans as Antiobesity using In Silico. Jurnal Ilmu Kefarmasian Indonesia. 19(1): 125. https://doi.org/10.35814/jifi.v19i1.946
Fujiwara, Y., Eguchi, S., Murayama, H., Takahashi, Y., Toda, M., Imai, K., & Tsuda, K. 2019. Relationship between diet/exercise and pharmacotherapy to enhance the GLP‐1 levels in type 2 diabetes. Endocrinology, Diabetes & Metabolism. 2(3): 1–14. https://doi.org/10.1002/edm2.68
Guardiola, S., & Mach, N. 2014. Therapeutic potential of Hibiscus sabdariffa: A review of the scientific evidence. Endocrinología y Nutrición (English Edition). 61(5), 274–295. https://doi.org/10.1016/j.endoen.2014.04.003
Haider, M. K. 2010. Computational Analysis of Protein-Ligand Interaction. In Yuki Gosei Kagaku Kyokaishi/Journal of Synthetic Organic Chemistry. University of York. https://doi.org/10.5059/yukigoseikyokaishi.54.427
Herranz-López, M., Olivares-Vicente, M., Encinar, J., Barrajón-Catalán, E., Segura-Carretero, A., Joven, J., & Micol, V. 2017. Multi-Targeted Molecular Effects of Hibiscus sabdariffa Polyphenols: An Opportunity for a Global Approach to Obesity. Nutrients. 9(8): 907. https://doi.org/10.3390/nu9080907
International Diabetes Federation. 2021. International Diabetes Federation. In Diabetes Research and Clinical Practice (10th ed., Vol. 102, Issue 2). https://doi.org/10.1016/j.diabres.2013.10.013
Jabeur, I., Pereira, E., Barros, L., Calhelha, R. C., Soković, M., Oliveira, M. B. P. P., & Ferreira, I. C. F. R. 2017. Hibiscus sabdariffa L. as a source of nutrients, bioactive compounds and colouring agents. Food Research International. 100: 717–723. https://doi.org/10.1016/j.foodres.2017.07.073
Kartinah, N. T., Fadilah, F., Ibrahim, E. I., & Suryati, Y. 2019. The Potential of Hibiscus sabdariffa Linn in Inducing Glucagon-Like Peptide-1 via SGLT-1 and GLPR in DM Rats. BioMed Research International. 2019: 1–8. https://doi.org/10.1155/2019/8724824
Kim, J., Kwon, J., Kim, M., Do, J., Lee, D., & Han, H. 2016. Computational protein–ligand docking and virtual drug screening with the AutoDock suite. Polymer Journal. 48(7): 829–834. https://doi.org/10.1038/pj.2016.37
Kodl, C. T., & Seaquist, E. R. 2008. Cognitive Dysfunction and Diabetes Mellitus. Endocrine Reviews. 29(4): 494–511. https://doi.org/10.1210/er.2007-0034
Lipinski, C. A. 2004. Lead- and drug-like compounds: The rule-of-five revolution. Drug Discovery Today: Technologies. 1(4): 337–341. https://doi.org/10.1016/j.ddtec.2004.11.007
Ma, X., Guan, Y., & Hua, X. 2014. Glucagon-like peptide 1-potentiated insulin secretion and proliferation of pancreatic β-cells. Journal of Diabetes. 6(5): 394–402. https://doi.org/10.1111/1753-0407.12161
Manna, A., Laksitorini, M. D., Hudiyanti, D., & Siahaan, P. 2017. Molecular Docking of Interaction between E-Cadherin Protein and Conformational Structure of Cyclic Peptide ADTC3 (Ac-CADTPC-NH2) Simulated on 20 ns. Jurnal Kimia Sains Dan Aplikasi,. 20(1): 30–36. https://doi.org/10.14710/jksa.20.1.30-36
Motiejunas, D., & Wade, R. C. 2006. Structural, energetic, and dynamic aspects of ligand-receptor interactions. Comprehensive Medicinal Chemistry II. 4: 193–212. https://doi.org/10.1016/b0-08-045044-x/00250-9
Müller, T. D., Finan, B., Bloom, S. R., Alessio, D. D., Drucker, D. J., Flatt, P. R., & Fritsche, A. 2019. Glucagon-like peptide 1 (GLP-1). Molecular Metabolism. 30(September): 72–130. https://doi.org/10.1016/j.molmet.2019.09.010
Muttaqin, F. Z. 2019. Molecular Docking and Molecular Dynamic Studies of Stilbene Derivative Compounds As Sirtuin-3 (Sirt3) Histone Deacetylase Inhibitor on Melanoma Skin Cancer and Their Toxicities Prediction. Journal of Pharmacopolium. 2(2): 112–121. https://doi.org/10.36465/jop.v2i2.489
Natesan, S., Subramaniam, R., Bergeron, C., & Balaz, S. 2012. Binding affinity prediction for ligands and receptors forming tautomers and ionization species: Inhibition of mitogen-activated protein kinase-activated protein kinase 2 (MK2). Journal of Medicinal Chemistry. 55(5): 2035–2047. https://doi.org/10.1021/jm201217q
Pena Neshich, I., Nishimura, L., de Moraes, F., Salim, J., Villalta-Romero, F., Borro, L., Yano, I., Mazoni, I., Tasic, L., Jardine, J., & Neshich, G. 2015. Computational Biology Tools for Identifying Specific Ligand Binding Residues for Novel Agrochemical and Drug Design. Current Protein & Peptide Science. 16(8): 701–717. https://doi.org/10.2174/1389203716666150505234923
Puratchikody, A., Sriram, D., Umamaheswari, A., & Irfan, N. 2016. 3 ‑ D structural interactions and quantitative structural toxicity studies of tyrosine derivatives intended for safe potent inflammation treatment. Chemistry Central Journal. 1–19. https://doi.org/10.1186/s13065-016-0169-9
Reid, T. 2012. Choosing GLP-1 Receptor Agonists or DPP-4 Inhibitors: Weighing the Clinical Trial Evidence. 30(1): 3–12. https://diabetesjournals.org/clinical/article/30/1/3/35430/Choosing-GLP-1-Receptor-Agonists-or-DPP-4
Saeedi, P., Petersohn, I., Salpea, P., Malanda, B., Karuranga, S., Unwin, N., Colagiuri, S., Guariguata, L., Motala, A. A., Ogurtsova, K., Shaw, J. E., Bright, D., & Williams, R. 2019. Global and regional diabetes prevalence estimates for 2019 and projections for 2030 and 2045: Results from the International Diabetes Federation Diabetes Atlas, 9th edition. Diabetes Research and Clinical Practice. 157: 107843. https://doi.org/10.1016/j.diabres.2019.107843
Soelistijo, S. 2021. Pedoman Pengelolaan dan Pencegahan Diabetes Melitus Tipe 2 Dewasa di Indonesia 2021. Global Initiative for Asthma, 46. www.ginasthma.org.
Trujillo, J. M., Nuffer, W., & Smith, B. A. 2021. GLP-1 receptor agonists : an updated review of head-to-head clinical studies. 1–15. https://doi.org/10.1177/2042018821997320
Umadevi, P., Manivannan, S., Fayad, A. M., & Shelvy, S. 2022. In silico analysis of phytochemicals as potential inhibitors of proteases involved in SARS-CoV-2 infection. Journal of Biomolecular Structure and Dynamics. 40(11): 5053–5059. https://doi.org/10.1080/07391102.2020.1866669
Vargas, J. A. R., Lopez, A. G., Piñol, M. C., & Froeyen, M. 2018. Molecular docking study on the interaction between 2-substituted-4,5-difuryl Imidazoles with different protein target for antileishmanial activity. Journal of Applied Pharmaceutical Science. 8(3): 14–22. https://doi.org/10.7324/JAPS.2018.8303
Wharton, S., Davies, M., Dicker, D., Lingvay, I., Mosenzon, O., Rubino, D. M., & Pedersen, S. D. 2022. Managing the gastrointestinal side effects of GLP-1 receptor agonists in obesity : recommendations for clinical practice. Postgraduate Medicine. 134(1): 14–19. https://doi.org/10.1080/00325481.2021.2002616
Yang, H., Chaofeng, L., Lixia, S., Jie, L., Yingchun, C., Zhuang, W., Weihua, L., Guixia, L., & Yun, T. 2017. AdmetSAR 2.0: web-service for prediction and optimization of chemical ADMET properties. Bioinformatics. 33(16),: 1–7. https://doi.org/10.1093/bioinformatics/bty707/5085368
Yildirim Simsir, I., Soyaltin, U. E., & Cetinkalp, S. 2018. Glucagon like peptide-1 (GLP-1) likes Alzheimer’s disease. Diabetes and Metabolic Syndrome: Clinical Research and Reviews. 12(3): 469–475. https://doi.org/10.1016/j.dsx.2018.03.002
Published
2023-07-30
How to Cite
ANDRIANI, T. et al. IN SILICO STUDY OF Hibiscus Sabdariffa Linn. ACTIVE COMPOUNDS IN GLP-1R: POTENTIAL AS ANTIDIABETIC DRUG. Jurnal Kimia (Journal of Chemistry), [S.l.], p. 118-128, july 2023. ISSN 2599-2740. Available at: <https://ojs.unud.ac.id/index.php/jchem/article/view/98556>. Date accessed: 21 nov. 2024. doi: https://doi.org/10.24843/JCHEM.2023.v17.i02.p02.
Section
Articles