KARAKTERISTIK FISIKO-KIMIA KATALIS HETEROGEN CaO-BASE DAN PEMANFAATANNYA UNTUK KONVERSI MINYAK GORENG BEKAS SECARA SINAMBUNG MENJADI BIODIESEL

  • I N. Simpen Program Studi Kimia, FMIPA, Universitas Udayana, Bali, Indonesia
  • I M. S. Negara Program Studi Kimia, FMIPA, Universitas Udayana, Bali, Indonesia
  • O. Ratnayani Program Studi Kimia, FMIPA, Universitas Udayana, Bali, Indonesia

Abstract

Penelitian tentang katalis heterogen berbasis CaO dari cangkang kepiting sebagai support yang dimodifikasi dengan K2CO3 dan TiO2 serta pemanfaatnnya untuk konversi minyak goreng bekas secara sinambung menjadi biodiesel telah dilakukan. CaO hasil preparasi dicampurkan dengan K2CO3 dan TiO2 dengan variasi rasio secara reaksi fasa padat. Katalis heterogen yang diperoleh dikarakterisasi luas permukaan spesifik BET dan rerata ukuran partikelnya dengan N2 gas sorption analyzer, keasaman dan kebasaan permukaannya dengan metode titrasi asam basa, serta kristalinitasnya dengan XRD. Katalis dengan karakteristik terbaik diuji aktivitas katalitiknya terhadap yield biodiesel dalam mengonversi minyak goreng bekas dan kandungannya dianalisis menggunakan GC-MS. Hasil yang diperoleh menunjukkan bahwa karakteristik fisiko-kimia katalis optimum diperoleh pada CaO/K2O:TiO2 rasio massa 3:1. Uji aktivitas katalitik untuk konversi minyak goreng bekas menjadi biodiesel diperoleh yield 88,24%, lebih tinggi dari CaO/K2O (65,03%) dan CaO (64,09%). Analisis GC-MS menunjukkan bahwa komposisi biodiesel yang dominan adalah metil ester, yaitu metil laurat, metil meristat, metil palmitoleat, dan metil linoleat.


Kata kunci: biodiesel, CaO/K2O:TiO2, katalis heterogen, karakteristik fisiko-kimia, minyak goreng bekas


Research about heterogeneous catalyst prepared from CaO of crab shells as support modified with K2CO3 and TiO2 as well as its utilization for converting used cooking oil (UCO) into biodiesel simultaneously has been carried out. Prepared CaO was mixed with K2CO3 and TiO2 with various ratios by using solid state reaction. The BET spesific surface area and the mean particle size of the resulting heterogenous catalyst were characterized by N2 gas sorption analyzer, surface acidity and basicity by base-acid titration method, and crystallinity by XRD. The activity of the catalyst with the best characteristics for converting UCO into biodiesel yield was tested and the chemical contents were analyzed by GC-MS. The results showed that the optimum physico-chemical characteristics of the heterogeneous catalyst was CaO/K2O:TiO2 with mass ratio of 3:1. The catalytic activity of the CaO/K2O/TiO2 catalyst in converting UCO into biodiesel was 88.24%, higher than CaO/K2O catalyst (65.03%) and CaO (64.09%). The results of GC-MS analysis indicated that the chemical contents of biodiesel were dominantly methyl esters, such as methyl laurate, methyl meristate, methyl palmitoleate, methyl palmitate, and methyl linoleate.


Keywords: biodiesel, CaO/K2O:TiO2, heterogeneous catalyst, physico-chemical characteristics, used cooking oil

Downloads

Download data is not yet available.

References

Abbah, E. C., Nwandikom, G. I., Egwuonwu, C. C. and Nwakuba, N. R. 2016. Effect of Reaction Temperature on the Yield of Biodiesel from Neem Seed Oil. American Journal of Energy Science. 3(3): 16-20.
Astuti, N. K. D., Simpen, I N., dan Suarsa, I W. 2019. Transesterifikasi Minyak Biji Karet (Hevea Brasiliensis) Menggunakan Katalis Heterogen Cangkang Kepiting Limbah Seafood Termodifikasi K2O. Jurnal Kimia. 13(1): 1-8.
Atadashi, I M., Aroua, M. K., Aziz, A.R., and Sulaiman, N. M. N. 2013. The Effects of Catalysts in Biodiesel Production: A Review. Journal of Industrial and Engineering Chemistry. 19(1): 14–26.
Bobade, S. N. and Khyade, V. B. 2012. Detail Study on the Properties of Pongamia Pinnata (Karanja) for the Production of Biofuel. Research Journal of Chemical Sciences. 2 (7): 16-20.
Borges, M. E. and Díaz, L. 2012. Recent Developments on Heterogeneous Catalysts for Biodiesel Production by Oil Esterification and Transesterification Reactions: A Review. Renewable and Sustainable Energy Reviews. 16: 2839-2849.
Degirmenbasi, N., Coskun, S., Boz, N., and Kaylon, D. M. 2015. Biodiesel Synthesis from Canola Oil via Heterogeneous Catalyst using Functionalizes CaO Nanoparticle. Fuel. 153: 620-627.
Encinar, J. M., Gonzalez, J. F., Pardal, A., and Martinez, G. 2010. Rape Oil Transesterification over Heterogeneous Catalyst. Food Processing Technology. 91: 1530-1536.
Endalew, A. K., Kiros, Y., and Zanzi, R. 2011. Heterogeneous Catalysis for Biodiesel Production From Jatropha Curcas Oil (JCO). Energy. 36: 2693-2700.
Enweremadu, C. C. and Mbarawa, M. M. 2009. Technical Aspects of Production and Analysis of Biodiesel from Used Cooking Oil-A Review. Renewable and Sustainable Energy Reviews. 13: 2205–22024.
Fadhil, D. H. 2017. Titanium Oxide Nanoparticles: Analysis and Photodegradation Activity for Hexamethylpararosaniline Chloride. J. Pharm. Sci. and Res. 9(5):685-689.
Guo, F. and Fang, Z. 2011. Biodiesel Production with Solid Catalysts. Biodiesel Feedstocks and Processing Technologies. 1–21.
Istadi, I., Sebastianus, A. P., and Tito, S. N. 2015. Characterization of K2O/CaO-ZnO Catalyst for Transesterification of Soybean Oil to Biodiesel. Procedia Environmental Sciences. 23: 394-399.
Mangesh, G., Kulkarni, and Ajay, K. D. 2006. Waste Cooking Oil-An Economical Source for Biodiesel: A Review. Industrial and Enginering Chemistry Research. 45: 2901-2913.
Math, M. C., Kumar, S. P., and Chetty, S. V. 2010. Technologies for Biodiesel Production from Used Cooking Oil-A Review. Energy for Sustainable Development. 14: 339–45.
Nair, P., Singh, B., Upadhyay, S. N., and Sharma, Y. C. 2012. Synthesis of Biodiesel from Low FFA Waste Frying Oil Using Calcium Oxide Derived from Mereterix as A Heterogeneous Catalyst. J. Cleaner Prod. 29–30: 82-90.
Nasreen, S., Liu, H., Skala, D., Waseem, A. and Wan, L. 2015. Preparation of Biodiesel from Soybean Oil using La/Mn Oxide Catalyst. Fuel Processing Technology. 13: 290-296.
Pereira, d-S.M.A., Mello, V.R.A., and Schmal, M. 2000. Interaction between Pt and MoO3 Dispersed over Alumina. Applied Catalyst A: General. 190: 177-190.
Refaat, A. A. 2011. Biodiesel Production using Solid Metal Oxide Catalysts. Int. J. Environ. Sci. Tech. 8(1): 203-221.
Robles, Medina, A., González, Moreno, P. A., Esteban, Cerdán, L., Molina, and Grima, E. 2009. Biocatalysis: Towards Ever Greener Biodiesel Production. Biotechnol. Adv. 27: 398-408.
Salinas, D., Guerrero, S., and Araya, P. 2010. Transesterification of Canola Oil on Potassium-Supported TiO2 Catalysts. Catalysis Communications. 11: 773–777.
Setiawati, Evy, dan Fatmir, E. 2012. Teknologi Pengolahan Biodiesel dari Minyak Goreng Bekas dengan Teknik Mikrofiltrasi dan Transesterifikasi Sebagai Alternatif Bahan Bakar Mesin Diesel. Jurnal Riset Industri. 6(2): 117-127.
Simpen, I N., Negara, I M. S., and Puspawati N. M. 2018. The Characterization of Heterogeneous Nanocatalyst of Biohydroxyapatite-Lithium and its Application for Converting Malapari Seed Oil (Milletia pinnata L.) to Biodiesel. Oriental Journal of Chemistry. 34(4): 1817-1823.
Simpen, I N., Negara, I M. S. and Jayanto, S. D. 2020. Optimizing Reaction Conditions of Biodiesel Production from Waste Cooking Oil Using Green Solid Catalyst. International Journal of Engineering Technologies and Management Research. 7(8): 65-71.
Zhang, Y., Dubé, M. A., McLean, D. D., and Kates, M. 2010. Biodiesel Production from Waste Cooking Oil: 2. Economic Assessment and Sensitivity Analysis. Bioresour Technol. 90: 229-240.
Published
2021-07-31
How to Cite
SIMPEN, I N.; NEGARA, I M. S.; RATNAYANI, O.. KARAKTERISTIK FISIKO-KIMIA KATALIS HETEROGEN CaO-BASE DAN PEMANFAATANNYA UNTUK KONVERSI MINYAK GORENG BEKAS SECARA SINAMBUNG MENJADI BIODIESEL. Jurnal Kimia (Journal of Chemistry), [S.l.], p. 188-194, july 2021. ISSN 2599-2740. Available at: <https://ojs.unud.ac.id/index.php/jchem/article/view/75660>. Date accessed: 21 nov. 2024. doi: https://doi.org/10.24843/JCHEM.2021.v15.i02.p09.
Section
Articles