TEMPERATURE OPTIMIZATION AGAINST P-METHOXYCINAMIC ACID SYNTHESIS THROUGH ULTRASONIC WAVE-ASSISTED KNOEVENAGEL CONDENSATION

  • E. Indriyanti Program Studi Farmasi, Sekolah Tinggi Ilmu Farmasi Yayasam Pharmasi, Semarang, Jawa Tengah, Indonesia
  • M. Suryaning P Program Studi Farmasi, Sekolah Tinggi Ilmu Farmasi Yayasam Pharmasi, Semarang, Jawa Tengah, Indonesia
  • Y. Purwaningsih Program Studi Farmasi, Sekolah Tinggi Ilmu Farmasi Yayasam Pharmasi, Semarang, Jawa Tengah, Indonesia
  • F. X. Sulistiyanto Program Studi Farmasi, Sekolah Tinggi Ilmu Farmasi Yayasam Pharmasi, Semarang, Jawa Tengah, Indonesia

Abstract

               Cinnamic acid derivative compounds are found in almost all plants but the quantity is very small that it cannot only rely on the results collected from the extraction method or the isolation of plant parts alone. Increasing amount of production of cinnamic acid derivatives can be done by chemical synthesis. One of the cinnamic acid derivatives that can be synthesized is p-methoxycinamic acid. It is a derivative of cinnamic acid that is substituted by a methoxy group at para position. The synthesis of this cinnamic derivative was obtained through the knoevenagel condensation reaction with the sonochemical method by reacting 6.61 mmol anisaldehyde, 16.8 mmol malonic acid, and 1.12 mmol ?-alanine dissolved in 37.1 mmol pyridine in an Erlenmeyer flask, then sonicated for 60 minutes at temperatures (400C, 500C, 600C). The synthesized compound was tested organoleptically and its melting point was measured. The result structure was elucidated using FTIR and GC-MS. The synthesized compound in the form of shiny white fine crystals had a distinctive odor and an optimum temperature of 600C and produces % yield of 92.71%. The results of the structural elucidation test of the synthesized compound using FTIR-ATR showed the presence of an OH carboxylate group, C=O carboxylate, C=C, an aromatic group, C=C conjugated aromatic group, and aromatic substitution in the para position. Testing by GC-MS found that the compound has a purity of 100% with a retention time of 11.71 minutes, with a base peak of 178 m/z with a relative abundance of 100%.


Keywords: elucidation, knoevenagel, p-methoxycinamic acid, synthesis, sonochemical.


               Senyawa-senyawa turunan asam sinamat terdapat hampir di semua tanaman namun kuantitasnya sangat kecil sehingga tidak bisa hanya mengandalkan hasil-hasil yang dikumpulkan dari metode ekstraksi ataupun isolasi bagian tanaman saja. Peningkatan jumlah produksi dari senyawa-senyawa turunan asam sinamat dapat dilakukan dengan sintesis kimia. Salah satu turunan asam sinamat yang dapat disintesis adalah asam p-metoksisinamat. Senyawa asam p-metoksisinamat merupakan senyawa turunan dari asam sinamat yang tersubstitusi gugus metoksi pada posisi para. Sintesis turunan sinamat ini didapatkan melalui reaksi kondensasi knoevenagel dengan metode sonokimia dengan mereaksikan 6,61 mmol anisaldehid, asam malonat 16,8 mmol, dan ?-alanine 1,12 mmol dilarutkan dalam piridin 37,1 mmol dalam labu Erlenmeyer, kemudian disonikasi selama 60 menit pada suhu (400C, 500C, 600C). Senyawa hasil sintesis diuji organoleptis dan diukur titik leburnya. Struktur hasil dielusidasi menggunakan  FT-IR dan GC-MS. Senyawa hasil sintesis berupa Kristal halus berwarna putih mengkilap memiliki bau khas dan  suhu optimum 60oC dan menghasilkan % yield sebesar 92,71%. Hasil Uji elusidasi struktur menggunakan FTIR-ATR dari senyawa hasil sintesis menunjukkan adanya gugus  OH karboksilat, C=O karboksilat, C=C, gugus aromatik, C=C terkonjugasi gugus aromatik, dan substitusi aromatik di posisi para. Pengujian dengan GC-MS didapatkan senyawa memiliki kemurnian 100% dengan waktu retensi 11,71 menit, dengan base peak 178 m/z dengan kelimpahan relatif 100%.


Kata kunci: asam p-metoksisinamat, elusidasi, knoevenagel, sintesis, sonokimia.

Downloads

Download data is not yet available.

References

Babu, P. N. K., Devi, B. R. and Dubey, P. K. 2013. Ultrasound assisted convenient, rapid and environmentally benign synthesis of N-alkylbenzimidazoles. Der Chemica Sinica. 4(1): 105–110.
Chiriac, C. I., Tanasa, F. and Nechifor, M. 2009. .A novel direct boron-mediated synthesis of cinnamic acids from aromatic aldehydes and aliphatic carboxylic acids. Revue Roumaine de Chimie. 54(11–12): 987–991.
Chiriac, C. I., Tanasa, F. and Onciu, M. 2005a. ‘A novel approach in cinnamic acid synthesis: Direct synthesis of cinnamic acids from aromatic aldehydes and aliphatic carboxylic acids in the presence of boron tribromide. Molecules. 10(2): 481–487. doi: 10.3390/10020481.
Chiriac, C. I., Tanasa, F. and Onciu, M. 2005b. A novel approach in cinnamic acid synthesis: Direct synthesis of cinnamic acids from aromatic aldehydes and aliphatic carboxylic acids in the presence of boron tribromide. Molecules. Molecular Diversity Preservation International, 10(2): 481–487. doi: 10.3390/10020481.
Ekowati, J., Nuzul W. D., Astika, G. N., Budiarti, T. 2010. Pengaruh Katalis pada Sintesis Asam O-Metoksisinamat dengan Material Awal O-Metoksi Bezaldehide dan Uji Aktivitas Analgesiknya. Majalah Farmasi Irlangga. 8(2).
Ekowati, J., Pratama, R. P., Novianti, K. A., Diyah, N. W. 2019. The Temperature Effect on Ultrasonic-assisted of Synthesis Methyl Ferulate and Its Antiplatelet Assay. ALCHEMY Jurnal Penelitian Kimia. 15(2):. 272-286.
Fessenden, R. . and Fessenden, J. S. 1986 Kimia Organik Dasar. Ed. ke-3.. Edited by A. H. Pudjaatmaka. Jakarta: Erlangga.
Ghomi, J. S. and Akbarzadeh, Z. 2018. Ultrasonic accelerated Knoevenagel condensation by magnetically recoverable MgFe2O4 nanocatalyst: A rapid and green synthesis of coumarins under solvent-free conditions. Ultrasonics Sonochemistry. 40: 78–83. doi: 10.1016/j.ultsonch.2017.06.022.
Guzman, J. D. 2014. Natural cinnamic acids, synthetic derivatives and hybrids with antimicrobial activity. Molecules. MDPI AG. 19292–19349. doi: 10.3390/molecules191219292.
Hoai, N. T. et al. 2018. Effect of β-alanine on the preparation of 4-ethoxy-cinnamic acid. Open Materials Science Journal. 12(1): 58–67. doi: 10.2174/1874088X01812010058.
Indriyanti, E. and Prahasiwi, M. S. 2020. Synthesis of Cinnamic Acid Based on Perkin Reaction using Sonochemical Method And Its Potential as Photoprotective Agent. 5(1): 54–61.
Kadidae, L. O., Ruslin, R., Nurliana, L., Kadir, L.A. 2020. Sintesis Ester Sinamat Menggunakan Variasi Katalis Asam. J. Pijar MIPA. 15(3): 240–246. doi: 10.29303/jpm.v15i3.1904.
Li, J. T. et al. 2001. Synthesis of cinnamic acids catalyzed by expansive graphite under ultrasound. Synthetic Communications. 31(5): 653–656. doi: 10.1081/SCC-100103251.
Mufidah, S. 2014. Modifikasi Struktur Senyawa Etil p-metoksisinamat yang Diisolasi dari Kencur (Kaempferia galanga Linn.) Melalui Proses Nitrasi dan Hidrolisis Serta Uji Aktivitas Sebagai Antiinflamasi. Jakarta.
Mumpuni, E., L, G. and Nurhidayati, L. 2010. Sintesis p-Metoksisinamoil Urea dengan Bahan Baku Etil p-Metoksisinamat yang Diisolasi dari Rimpang Kencur (Kaempferia galanga L.)’, Jurnal Farmasi Universitas Pancasila.
Patel , B. R. et al. 2014. Green Efficient Synthesis of Aryl Thioamides Using Ultrasound: A Comparative Study. Journal of Pharmacy And Applied Sciences. 1(1): 29–33.
Pawar, H. S., Wagh, A. S. and Lali, A. M. 2016. Triethylamine: A potential N-base surrogate for pyridine in Knoevenagel condensation of aromatic aldehydes and malonic acid’, New Journal of Chemistry. Royal Society of Chemistry, 40(6): 4962–4968. doi: 10.1039/c5nj03125g.
Pratiwi et al. 2018. Comparison of esterification and transesterification method in synthesis of octyl p-methoxycinnamate (OPMC) from kaempferia galanga L. rhizome. Rasayan Journal of Chemistry. 11(4): 1618–1623. doi: 10.31788/RJC.2018.1144036.
Sharma, P. 2011. Cinnamic acid derivatives: A new chapter of various pharmacological activities. Journal of Chemical and Pharmaceutical Research. 3(2): 403–423.
Published
2022-01-28
How to Cite
INDRIYANTI, E. et al. TEMPERATURE OPTIMIZATION AGAINST P-METHOXYCINAMIC ACID SYNTHESIS THROUGH ULTRASONIC WAVE-ASSISTED KNOEVENAGEL CONDENSATION. Jurnal Kimia (Journal of Chemistry), [S.l.], p. 101-108, jan. 2022. ISSN 2599-2740. Available at: <https://ojs.unud.ac.id/index.php/jchem/article/view/69871>. Date accessed: 04 nov. 2024. doi: https://doi.org/10.24843/JCHEM.2022.v16.i01.p13.
Section
Articles