COLON CANCER DRUG DEVELOPMENT STUDY OF ELAGIC ACID DERIVATIVES

  • L. R. Jannah Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Negeri Surabaya, Surabaya, Jawa Timur, Indonesia
  • I G. M. Sanjaya Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Negeri Surabaya, Surabaya, Jawa Timur, Indonesia

Abstract

Penelitian ini bertujuan untuk mengembangkan obat kanker kolon dengan bahan baku senyawa asam Elagat dan turunannya menggunakan metode Hubungan Kuantitatif Struktur-aktivasi (HKSA) dan penambatan molekular. Deskriptor yang dipakai HKSA meliputi deskriptor elektronik, sterik, dan hidrofobik. Karakter dari masing-masing deskriptor dikomputasikan menggunakan software NWchem dan MarvinSketch dengan teori HF (Hartree-Fock). Penambatan molekul dilakukan dengan menggunakan software Autodock Tools dan Biovia. Hasilnya menunjukkan bahwa model persamaan terbaik HKSA senyawa bahan obat dari asam elagat dan turunanya adalah Log P = -7.103 + (-0.005*PSA) + (-0.729*MR) + (0.003*Volume) + (0.002*SA) + (-99.912*Homo) + (-38.893*Lumo)+ (-0.072*MD)+ (0.006*Eh) + (1.409*P) yang diperoleh untuk senyawa 2,3,7-trichloro-8-methoxychromeno[5,4,3-cde]chromene-5,10-dione. Hasil penambatan molekular tersebut memiliki energi ikat sebesar -9.94 kkal/mol dan konstanta inhibisinya 51,54 nM.


Kata kunci: asam elagat, HKSA, kanker kolon, penambatan molekular


This study aimed to develop a colon cancer drug with a raw material of ellagic acid and its derivatives using the Quantitative Structure-Activity Relationship (QSAR) method and molecular docking. The descriptors used in QSAR were electronic, steric, and hydrophobic descriptors. The characters of each descriptor were computed using NWchem and MarvinSketch software with the HF (Hartree-Fock ) theory. Molecular docking was performed using Autodock Tools and Biovia software. The results show that the best equation of QSAR model for medicinal compounds from ellagic acid and derivatives was Log P = -7.103 + (-0.005 * PSA) + (-0.729 * MR) + (0.003 * Volume) + (0.002 * SA) + (- 99,912 * Homo) + (-38,893 * Lumo) + (-0.072 * MD) + (0.006 * Eh) + (1.409 * P) obtained for 2,3,7-trichloro-8-methoxychromeno [5,4, 3-cde] chromene-5,10-dione compound. The result of molecular docking had a binding energy of -9.94 kcal/mol and an inhibition constant of 51.54 nM.


Keywords: colon cncer, ellagic acid, molecular docking, QSAR.

Downloads

Download data is not yet available.

References

BPOM. 2014. Peraturan Kepala Badan Pengawas Obat Dan Makanan Republik Indonesia Nomor 2 Tahun 2014 Tentang Organisasi dan Tata Kerja Unit Pelaksana Teknis di Lingkungan BPOM, (875): 1–111.
Ceci, C., Lacal, P., Tentori, L., De Martino, M., Miano, R., & Graziani, G. 2018. Experimental Evidence of the Antitumor, Antimetastatic and Antiangiogenic Activity of Ellagic Acid. Nutrients. 10(11): 1756. doi: 10.3390/nu10111756.
Cherkasov, A., Muratov, E. N., Fourches, D., Varnek, A., Baskin, I. I., Cronin, M., Dearden, J., Gramatica, P., Martin, Y. C., Todeschini, R., Consonni, V., Kuz'min, V. E., Cramer, R., Benigni, R., Yang, C., Rathman, J., Terfloth, L., Gasteiger, J., Richard, A., Tropsha, A. 2014. QSAR Modeling : Where Have You Been ? Where Are You Going To ?. Journal of Medicinal Chemistry. 57(12): 4977–5010. doi: 10.1021/jm4004285.
Cheshomi, H., Reza, A., Matin, M. M. 2020. Ellagic acid and human cancers : a systems pharmacology and docking study to identify principal hub genes and main mechanisms of action Database of Interacting Proteins. Molecular Diversity. 10:1007/ s11030-020-10101-6.
Fang, Y., Zhou, H., Xia, J. F., Lin, J. J., Li, R. Z., Yang, D. Q., Xu, M. Y., Li, X. Y. 2015. Ellagic acid regulates Wnt/β-catenin signaling pathway and CDK8 in HCT 116 and HT 29 colon cancer cells. Bangladesh J Pharmacol. 47–56. doi: 10.3329/bjp.v10i1.21068.
IA, A., SO, W. and OO, A. 2016. Molecular Docking Studies of Lonchocarpus cyanescens Triterpenoids as Inhibitors for Malaria. 6(2): 2–5. doi: 10.4172/2161-0398.1000213.
Ibrahim, Omotayo, A., Oyebamiji A. K., Oyewole, O. R., Semire, B. 2018. A DFT-Based QSAR and Molecular Docking Studies on Potent Anti- Colon Cancer Activity of Pyrazole Derivatives ADFT-Based QSAR and Molecular Docking Studieson Potent Anti-Colon Cancer Activity of Pyrazole Derivatives Strictly as per the compliance and regulations of . 18(2): 9–21.
Kapoor, Y. and Kumar, K. 2019. Quantitative Structure Activity Relationship in Drug Design : An Overview. SF Journal of Pharmaceutical and Analytical Chemistry. 2(2): 1–13.
Kumer, A., Sarker, N. and Paul, S. 2019. The theoretical investigation of HOMO, LUMO, thermophysical properties and QSAR study of some aromatic carboxylic acids using HyperChem programming. 3(1): 26–37. doi: 10.32571/ijct.478179.
Lagorce, D., Douguet, D., Miteva, M. A., & Villoutreix, B. O. 2017. Computational analysis of calculated physicochemical and ADMET properties of protein- protein interaction inhibitors. Scientific Reports. 7(1): 1–15. doi: 10.1038/srep46277.
Luyen, B. T. T., Thao, N. P., Dat, L. D., Eun, K. J., Yang, S. Y., Kwon, S. U. Lee, Y. M., Kim, Y. H. 2015. Soluble Epoxide Hydrolase Inhibitory Activity from Euphorbia supina Rafin. Natural Product Science. 21(3): 176–184.
Mira, A., Sabry, M. A., Shimizu, K., & Abdel Bar, F. M. 2020. A new pimarane-type diterpene obtained by biotransformation inhibits human HCT-116 colorectal carcinoma through inhibition of LTA 4 H activity. Medicinal Chemistry Research. doi: 10.1007/s00044-020-02520-9.
Molina, A. R., Vargas, T., Molina, S., Sanchez, J., Martinez-Romero, J., Gonzalez-Vallinas, M., Martín-Hernández, R., Sánchez-Martínez, R., Cedrón, M. G., Dávalos, A., Calani, L., Rio, D. D., González-Sarrías, A., Espín, J. C., Francisco A Tomás-Barberán, F. A., Reglero, G. 2015. The Ellagic Acid Derivative 4,4' -di- O -methylellagic Acid Efficiently Inhibits Colon Cancer Cell Growth through a Mechanism Involving WNT16’, Ramirez de Molina, A., Vargas, T., Molina, S., Sanchez, J., Martinez-Romero, J., Gonzalez-Vallinas, M., … Reglero, G. (2015). The Ellagic Acid Derivative 4,4’-Di-O-Methylellagic Acid Efficiently Inhibits Colon Cancer Cell Growth through a Mechanism Involving WNT16. Journal of Pharmacology and Experimental Therapeutics. 353(2), 433–444. doi:10.1124/jpet.114.221796
Montané, X., Kowalczyk, O., Reig-Vano, B., Bajek, A., Roszkowski, K., Tomczyk, R., Pawliszak, W., Giamberini, M., Mocek-Płóciniak, A., Tylkowski, B. 2020. Current Perspectives of the Applications of Polyphenols and Flavonoids in Cancer Therapy. Molecules. 25(15): 3342. doi:10.3390/molecules25153342
Noviardi, H. and Fachrurrazie. 2015. Potensi Senyawa Bullatalisin Sebagai Inhibitor Protein Leukotrien A4 Hidrolase Pada Kanker Kolon Secara In Silico. 5(2): 65–73.
Rowaiye, A. B Onuh, O. A., Sunday, R. M., Abdulmalik, Z. D., Bur, D., Emeter, N. W., Oluwaseun Adeola Obideyi, O. A., Pelletri, C. D., UjahSamuel, I. R., Iwuozor, C. R., Aondona, P. Y., Etalong, V. O., Yussuff, N., Akpa, J. N. 2020. Structure-Based Virtual Screening And Molecular Dynamic Simulation Studies Of The Natural Inhibitors Of Sars-Cov-2 Main Protease’, J Ong Chem Res, 5(1): 20–31. doi: 10.5281/zenodo.3767102.
Sethi, A., Joshi, K. and Sasikala, K. 2020. Molecular Docking in Modern Drug Discovery : Principles and Recent Applications. Drug Discovery and Development - New Advances Empirical. 1–21. doi: 10.5772/intechopen.85991.
Siegel, R. L., Miller, K. D., Sauer, A. G., Fedewa, S. A., Butterly, L. F., Anderson, J. C., Cercek, A., Smith, R. A., and Jemal, A. 2020. Colorectal Cancer Statistics, 2020. 70(3): 145–164. doi: 10.3322/caac.21601.
Suciati, L., Lestari, S. R. and Lukiati, B. 2020. Molecular docking studies of geraniin, corilagin, and ellagic acid from rambutan (Nephelium lappaceum L.) peel extract against squalene synthase as potential anti hypercholesterolemia. Proceedings Of The 3rd International Seminar On Metallurgy And Materials (ISMM2019): Exploring New Innovation in Metallurgy and Materials. doi: 10.1063/5.0002534.
Syahputra, G., Ambarsari, L. and Sumaryada, T. 2014. Simulasi Docking Kurkumin Enol, Bisdemetoksikurkumin Dan Analognya Sebagai Inhibitor Enzim12-Lipoksigenase. Jurnal Biofisika. 10(1): 55–67.
Vo, T. T. L., Jang, W. and Jeong, C. 2018. Leukotriene A4 hydrolase : an emerging target of natural products for cancer chemoprevention and chemotherapy. doi:10.1111/nyas.13929.
Wang, Y., Ren, F., Li, B., Song, Z., Chen, P., & Ouyang, L. 2019. Ellagic acid exerts antitumor effects via the PI3K signaling pathway in endometrial cancer. Journal of Cancer. 10(15): 3303–3314. doi:10.7150/jca.29738
Zhao, S., Yao, K., Li, D., Liu, K.,Jin, G.,Yan, M., Wu, Q., Chen, H., Shin, S. H., Bai, R., Wang, G., Bode, A. M., Dong, Z., Guo, Z., Dong, Z.Zhao, S., Yao, K., Li, D., Liu, K.,Jin, G.,Yan, M., Wu, Q., Chen, H., Shin, S. H., Bai, R., Wang, G., Bode, A. M., Dong, Z., Guo, Z., Dong, Z. 2019. Inhibition of LTA4H by bestatin in human and mouse colorectal cancer. EBioMedicine. doi: 10.1016/ j.ebiom.2019.05.008.
Published
2021-07-31
How to Cite
JANNAH, L. R.; SANJAYA, I G. M.. COLON CANCER DRUG DEVELOPMENT STUDY OF ELAGIC ACID DERIVATIVES. Jurnal Kimia (Journal of Chemistry), [S.l.], p. 215-222, july 2021. ISSN 2599-2740. Available at: <https://ojs.unud.ac.id/index.php/jchem/article/view/67896>. Date accessed: 24 nov. 2024. doi: https://doi.org/10.24843/JCHEM.2021.v15.i02.p13.
Section
Articles