ANALISIS SIFAT DAN KEMAMPUAN MEMBRAN ELEKTROLIT KITOSAN-SILIKA DARI LIMBAH CANGKANG KELAPA SAWIT UNTUK APLIKASI DIRECT METHANOL FUEL CELL

  • F. P. Ardi Institut Teknologi Kalimantan
  • I. P. Anggraini Institut Teknologi Kalimantan
  • M. Purwanto Institut Teknologi Kalimantan
  • D. Permana Universitas Sembilanbelas November Kolaka
  • A. Priyangga Institut Teknologi Sepuluh Nopember
  • L. Atmaja Institut Teknologi Sepuluh Nopember

Abstract

        Membran elektrolit berbasis kitosan dengan penambahan filler silika dari cangkang sawit telah berhasil disintesis melalui teknik inversi vasa. Pada tahap awal, kitosan diperoleh melalui proses demineralisasi, deproteinasi, dan deasetilasi dari serbuk kulit udang, sedankan silika diperoleh dari limbah cangkang kelapa sawit. Hadirnya silika dalam lapisan struktur membran diketahui mampu meningkatkan kerapatan membran dan menyediakan jalur media lintasan proton yang dapat mengurangi terjadinya methanol crossover dan meningkatkan pergerakan proton sehingga kinerja membran lebih optimal. Pada penelitian ini, fabrikasi membran dilakukan dengan melarutkan serbuk kitosan dan silika pada asam asetat 2% dengan variasi komposisi silika 5%, 10%, dan 15% (b/b). Karakterisasi membran dilakukan dengan FTIR, water uptake, methanol uptake, permeabilitas methanol, dan ion exchange capacity. Hasil pengujian menunjukkan kinerja terbaik diperoleh pada sampel membran dengan kandungan silika 15% dengan nilai water uptake, methanol uptake, permeabilitas methanol, dan Ion Exchange Capacity (IEC) secara berturut-turut sebesar 72,89%, 62,19%,  0,006 mgcm2/s mol, dan 4,15 mmol/g. Semua hasil pengujian menunjukkan bahwa membran komposit kitosan dengan filler silika menjanjikan sebagai membran alternatif untuk aplikasi Direct Methanol Fuel Cell (DMFC).



Kata kunci:




kitosan, silika, cangkang kelapa sawit, membran, DMFC



ABSTRACT


       A chitosan-based electrolyte membrane with the addition of silica filler from palm kernel shells has been successfully synthesized using the phase inversion technique. In the initial stage, chitosan was obtained through a demineralization, deproteination, and deacetylation process from shrimp shell powder, while silica was obtained from palm oil shell waste. The presence of silica in the membrane structure layer can increase membrane density and provide a media pathway for proton passage, which will reduce the occurrence of methanol crossover and increase proton movement; therefore, membrane performance was more optimal. In this research, membrane fabrication was carried out by dissolving chitosan and silica powder in 2% acetic acid with variations in silica composition of 5%, 10%, and 15% (w/w). Membrane characterization was carried out using FTIR, water uptake, methanol uptake, methanol permeability, and ion exchange capacity. The test results showed that the best performance was obtained on membrane samples with a silica content of 15% with values of water uptake, methanol uptake, methanol permeability, and Ion Exchange Capacity (IEC), respectively, of 72.89%, 62.19%, 0.006 mg/cm2/s mol, and 4.15 mmol/g. All test results show that the chitosan composite membrane with silica filler is promising as an alternative membrane for Direct Methanol Fuel Cell (DMFC) applications.



Keywords:




chitosan, silica, palm shell, membrane, DMFC



Downloads

Download data is not yet available.

Author Biographies

F. P. Ardi, Institut Teknologi Kalimantan

Program Studi Teknik Kimia, Institut Teknologi Kalimantan, Balikpapan 76127, Indonesia

I. P. Anggraini, Institut Teknologi Kalimantan

Program Studi Teknik Kimia, Institut Teknologi Kalimantan, Balikpapan 76127, Indonesia

M. Purwanto, Institut Teknologi Kalimantan

Program Studi Teknik Kimia, Institut Teknologi Kalimantan, Balikpapan 76127, Indonesia

D. Permana, Universitas Sembilanbelas November Kolaka

Jurusan Pendidikan Kimia, Universitas Sembilanbelas November Kolaka, Kolaka 93517, Indonesia

A. Priyangga, Institut Teknologi Sepuluh Nopember

Departemen Kimia, Institut Teknologi Sepuluh Nopember, Surabaya 60181, Indonesia

L. Atmaja, Institut Teknologi Sepuluh Nopember

Departemen Kimia, Institut Teknologi Sepuluh Nopember, Surabaya 60181, Indonesia

References

Adiyar, S. S. 2020. An Overview of Synthetic Polymer-Based Membrane Modified With Chitosan For Direct Methanol Fuel Cell Aplication. Materials Science and Engineering : 1-10.
Agustina, S., Swantara, I. M. D., & Suartha, I. N. (2015). Isolasi kitin, karakterisasi, dan sintesis kitosan dari kulit udang. Jurnal Kimia, 9(2): 271-278.
Anggasari, N., Alauhdin, M., dan Prasetya, A. T. 2013. Synthesis and Charaucterization of Tripolyphosphate Chitosan Membranes as an Alternative to Control Drug Release Systems. Indo. J. Chem. Sci. 29(3): 190-193.
Atmaja L., Mochammad Purwanto, Muhammad Taufiq Salleh, Mohamad Azuwa Mohamed, Juhana Jaafar, Ahmad Fauzi Ismail, Mardi Santoso, Nurul Widiastuti. 2019. GPTMS-Montmorillonite-filled biopolymer chitosan membrane with improved compatibility, physicochemical, and thermal stability properties. Malaysian Journal of Fundamental and Applied Sciences. 15( 4): 492-497
Azizati, Z. 2019. Pembuatan dan karakterisasi kitosan kulit udang galah. Walisongo Journal of Chemistry. 2(1): 10-16.
Bai H., Haoqin Zhang, Yakun He, Jindun Liu, Bing Zhang, Jingtao Wang. 2014. Enhanced proton conduction of chitosan membrane enabled by halloysite nanotubes bearing sulfonate polyelectrolyte brushes. Journal of Membrane Science. 454: 220 – 232.
Berghius, N. Z. 2020. Sintesis Membran Komposit Berbahan Dasar Kitosan Dengan Metode Sol-Gel Sebagai Membran Fuel Cell Pada Suhu Tinggi. Al-Kimiya. 7(1): 35-46.
Handayani, L., Syahputra, F., & Astuti, Y. 2018. Utilization and characterization of oyster shell as chitosan and nanochitosan. Jurnal Kimia Sains Dan Aplikasi. 21(4): 224-231.
Ikubanni, P. O. 2020. Influence of Temperature on The Chemical Compositions and Microstrusctural Changes of Ash Formed Fom Palm Kernel Shell. Result in Engineering. 8: 1-9.
Imoisili, Patrick E., Kingsley O. Ukoba & Jen, T. C. 2020. Green Technology Extraction and Characterisation of Silica Nanoparticles from Palm Kernel Shell Ash via Sol-Gel. Journal of Materials Research and Technology. 9(1): 307-313.
Nugraeni C.D., Lukman Atmaja, Nur Hayati, Mochammad Purwanto, Mardi Santoso, Yuli Kusumawati. 2021. Fabrication and Characterization of Chitosan/N-Phthaloyl Composite Membrane for DMFC Application. Jurnal Riset Kimia. 12 (2): 143 – 150.
Pausa, Y., Malino, M. B. A., & Arman, Y. 2015. Optimasi Tingkat Kemurnian Silika, SiO2, dari Abu Cangkang Sawir Berdasarkan Konsentrasi Pengasaman. Prisma Fisika. 3(1): 1-4.
Prapainainar, P., Pattanapisutkun, N., Prapainainar, C., & Kongkachuichay, P. (2019). Incorporating graphene oxide to improve the performance of Nafion-mordenite composite membranes for a direct methanol fuel cell. International Journal Of Hydrogen Energy. 44(1): 362-378.
Purwanto, M., Lukman Atmaja, Mohamad Azuwa Mohamed, M. T. Salleh, Juhana Jaafar, A. F. Ismail, Mardi Santoso, and Nurul Widiastuti. 2016. Biopolymer-Based Electrolyte Membranes from Chitosan Incorporated with Montmorillonite-Crosslinked GPTMS for Direct Methanol Fuel Cells. RSC Advances. 6 (3): 2314–22.
Purwanto M., Lukman Atmaja, M.T. Salleh, Mohamad Azuwa Mohamed, Juhana Jaafar, Ahmad Fauzi Ismail, Mardi Santoso, Nurul Widiastuti. 2017. Correlation Between Proton Conductivity, Hydrophilicity, And Thermal Stability Of Chitosan/Montmorillonite Composite Membrane Modified Gptms And Their Performance In Direct Methanol Fuel Cell. Malaysian Journal of Analytical Sciences. 21(3): 675 – 689.
Purwanto, M., Widiastuti, N., Saga, B. H., & Gusmawan, H. 2021. Synthesis of Composite Membrane Based Biopolymer Chitosan With Silica From Rice Husk Ash For Direct Methanol Fuel Cell Application. IOP Conference Series: Earth and Environmental Science. 830(1): 1-8.
Rapierna A., 2012. Sintesis dan Pemanfaatan Membran Kitosan-Silika Sebagai Membran Pemisah Ion Logam Fe2+. Indonesian Journal of Chemical Science: 37-42.
Thiam, H. S., W. R W Daud, S. K. Kamarudin, A. B. Mohamad, A. A H Kadhum, K. S. Loh, and E. H. Majlan. 2013. Performance of Direct Methanol Fuel Cell with a Palladium-Silica nanofibre/Nafion Composite Membrane. Energy Conversion and Management. 75: 718–26.
Wang, Y., Zhongyi Jiang, Huifeng Li, and Dong Yang. 2010. Chitosan Membranes Filled by GPTMS-Modified Zeolite beta Particles with Low Methanol Permeability for DMFC. Chemical Engginering and Processing: Process Intensification. 49(3): 278-285.
Wulandari, A. V., Ella K., & Triastuti S. 2017. Pengaruh Penambahan Abu Layang Termodifikasi terhadap Karakteristik Membran Elektrolit Berbahan Dasar Kitosan. Indonesian Journal of Chemical Science. 6(2): 105-109.
Zaki, A., Saputra, E., & Fadli, A. 2017. Pembuatan Silika High Grade dari Fly Ash Sawit dengan Proses Ekstraksi dan Cation Exchange. Jom FTEKNIK. 4(2): 1-4.
Published
2025-07-31
How to Cite
ARDI, F. P. et al. ANALISIS SIFAT DAN KEMAMPUAN MEMBRAN ELEKTROLIT KITOSAN-SILIKA DARI LIMBAH CANGKANG KELAPA SAWIT UNTUK APLIKASI DIRECT METHANOL FUEL CELL. Jurnal Kimia (Journal of Chemistry), [S.l.], p. 225-232, july 2025. ISSN 2599-2740. Available at: <https://ojs.unud.ac.id/index.php/jchem/article/view/115467>. Date accessed: 08 aug. 2025. doi: https://doi.org/10.24843/JCHEM.2025.v19.i02.p12.
Section
Articles
Warning: array_merge(): Argument #2 is not an array in /var/www/ojs.unud.ac.id_backup/lib/pkp/classes/core/PKPApplication.inc.php on line 578 Warning: Invalid argument supplied for foreach() in /var/www/ojs.unud.ac.id_backup/plugins/generic/recommendByAuthor/RecommendByAuthorPlugin.inc.php on line 114