BIOINFORMATICS STUDY: THE POTENCY OF Syzygium samarangense STEM BARK DICHLOROMETHANE EXTRACT AS ANTI-MELASMA AND ANTI-ACNE

  • T. Tukiran Program Studi S1 Kimia, FMIPA, Universitas Negeri Surabaya, Jalan Ketintang, Surabaya, 60231, Jawa Timur, Indonesia

Abstract

          Syzygium samarangense mengandung senyawa flavonoid telah terbukti bermanfaat. Penelitian sebelumnya mengungkapkan bahwa aurentiacin, pinocembrin, stercurensin, dan uvangoletin sebagai bahan kimia bioaktif terdapat pada kulit batang tanaman. Senyawa ini terbukti memiliki aktivitas antioksidan yang sangat baik. Namun, belum ada penelitian mengenai potensinya sebagai agen anti melasma dan anti jerawat. Penelitian ini berupaya melihat keempat bahan kimia tersebut berpotensi sebagai penghambat tyrosinase (TYRP1) anti melasma dan penghambat androgen (AR) anti jerawat dengan menggunakan teknologi biokomputasi. Studi ini mencakup analisis druglikeness Lipinski dan molecular docking menggunakan protein TYRP1 dan AR dengan hidrokuinon dan clascoterone sebagai obat kontrol. Analisis lebih lanjut dilakukan dengan prediksi PASS-Online untuk mendukung potensi senyawa. Hasilnya menunjukkan bahwa semua senyawa berpotensi menjadi agen anti melasma dan anti jerawat yang efektif, dengan pinocembrin (-7.4 kkal/mol untuk TYRP1; -8.8 kkal/mol untuk AR) menjadi senyawa yang paling manjur. Senyawa ini memenuhi aturan kemiripan obat Lipinski dan didukung oleh prediksi PASSOnline bahwa senyawa tersebut berpotensi sebagai pemutih kulit dan antagonis androgen. Namun, penelitian lebih lanjut, termasuk penelitian in vitro dan in vivo, diperlukan untuk memastikan potensinya sebagai agen anti melasma dan anti jerawat.


Kata kunci:   anti-jerawat, anti-melasma, jerawat, hiperpigmentasi, molecular docking.


ABSTRACT


      Syzygium samarangense containing flavonoid compounds have been proven to be beneficial. Previous research revealed that the aurentiacin, pinocembrin, stercurensin, and uvangoletin as bioactive chemicals were present in the plant stem bark. These compounds have been found to have excellent antioxidant activity. However, there has been no research on their potential as anti-melasma and anti-acne agents. This research attempts to look into these four chemicals potential as anti-melasma tyrosinase inhibitors and anti-acne androgen inhibitors using biocomputation technology. The study included druglikeness and molecular docking analyses using TYRP1 and AR proteins with hydroquinone and clascoterone as control drugs. Further analysis was carried out with PASS-Online predictions to support the potency of compounds. The results indicated that all compounds have the potential to be effective anti-melasma and anti-acne agents, with pinocembrin (-7.4 kcal/mol for TYRP1; -8.8 kcal/mol for AR) being the most potent compound. These compounds fulfilled Lipinski's druglikeness rules and were supported by PASSOnline's predictions that they have potential as skin whiteners and androgen antagonists. However, further research, including in vitro and in vivo studies, is necessary to confirm their potential as anti-melasma and anti-acne agents.


Keywords: Anti-acne, anti-melasma, acne, hyperpigmentation, molecular docking.

Downloads

Download data is not yet available.

References

Alapatt, C.F. & Matanaj, K. 2024. Updates to Acne Vulgaris Treatment: A Review of a Topical Androgen Receptor Inhibitor.
Ashraf, Z., Rafiq, M., Seo, S.-Y., Kwon, K.S., Babar, M.M. & Sadaf Zaidi, N.-S. 2015. Kinetic and in silico studies of novel hydroxy-based thymol analogues as inhibitors of mushroom tyrosinase. European Journal of Medicinal Chemistry, 98: 203–211. https://www.sciencedirect.com/science/article/pii/S0223523415300581.
Bataille, V., Snieder, H., MacGregor, A.J., Sasieni, P. & Spector, T.D. 2002. The influence of genetics and environmental factors in the pathogenesis of acne: a twin study of acne in women. Journal of Investigative Dermatology, 119(6): 1317–1322.
Baxter, L.L. & Pavan, W.J. 2013. The etiology and molecular genetics of human pigmentation disorders. Wiley interdisciplinary reviews. Developmental biology, 2(3): 379–392.
Bhat, Y.J., Latief, I. & Hassan, I. 2017. Update on etiopathogenesis and treatment of Acne. Indian journal of dermatology, venereology and leprology, 83: 298.
Carradori, S., Melfi, F., Rešetar, J. & Şimşek, R. 2024. Tyrosinase enzyme and its inhibitors: An update of the literature. Metalloenzymes: 533–546.
Conforti, C., Zalaudek, I., Vezzoni, R., Retrosi, C., Fai, A., Fadda, S., Di Michele, E. & Dianzani, C. 2020. Chemical peeling for acne and melasma: current status and innovations. Giornale Italiano di Dermatologia e Venereologia, 155(3): 280–285.
Dréno, B., Thiboutot, D., Layton, A.M., Berson, D., Perez, M., Kang, S. & Acne, G.A. to I.O. in. 2015. Large‐scale international study enhances understanding of an emerging acne population: adult females. Journal of the European Academy of Dermatology and Venereology, 29(6): 1096–1106.
Eberhardt, J., Santos-Martins, D., Tillack, A.F. & Forli, S. 2021. AutoDock Vina 1.2.0: New Docking Methods, Expanded Force Field, and Python Bindings. Journal of chemical information and modeling, 61(8): 3891–3898.
Hering, A., Stefanowicz-Hajduk, J., Dziomba, S., Halasa, R., Krzemieniecki, R., Sappati, S., Baginski, M. & Ochocka, J.R. 2023. Mangiferin Affects Melanin Synthesis by an Influence on Tyrosinase: Inhibition, Mechanism of Action and Molecular Docking Studies. Antioxidants, 12(5): 1016.
Iraji, A., Khoshneviszadeh, Mahsima, Bakhshizadeh, P., Edraki, N. & Khoshneviszadeh, Mehdi. 2020. Structure-Based Design, Synthesis, Biological Evaluation and Molecular Docking Study of 4-Hydroxy-N’-methylenebenzohydrazide Derivatives Acting as Tyrosinase Inhibitors with Potentiate Anti-Melanogenesis Activities. Medicinal Chemistry, 16(7): 892–902. http://www.eurekaselect.com/article/99926.
Jayaram, B., Singh, T., Mukherjee, G., Mathur, A., Shekhar, S. & Shekhar, V. 2012. Sanjeevini: a freely accessible web-server for target directed lead molecule discovery. In BMC bioinformatics. Springer: 1–13.
Jensen, F. 2017. Introduction to Computational Chemistry Computational Chemistry.
Jin, W., Stehbens, S.J., Barnard, R.T., Blaskovich, M.A.T. & Ziora, Z.M. 2024. Dysregulation of tyrosinase activity: a potential link between skin disorders and neurodegeneration. Journal of Pharmacy and Pharmacology, 76(1): 13–22.
Kalabalik-Hoganson, J., Frey, K.M., Ozdener-Poyraz, A.E. & Slugocki, M. 2021. Clascoterone: a novel topical androgen receptor inhibitor for the treatment of acne. Annals of Pharmacotherapy, 55(10): 1290–1296.
Kamila, R.K.Z., Sururi, A.M., Arumsari, M.D., Hendrata, E., Wibowo, D.M.F., Fajriyah, L. & Rahayu, D.A. 2024. Study in Silico on Effectiveness of Blood Cockle (Anadara nodifera) Fatty Acid Isolate to Reduce Hypertension. Thalassas: An International Journal of Marine Sciences: 1–12. https://doi.org/10.1007/s41208-024-00679-1.
Kharisma, V., Widyananda, M., Nege, A., Naw, S. & Nugraha, A. 2021. Tea catechin as antiviral agent via apoptosis agonist and triple inhibitor mechanism against HIV-1 infection: A bioinformatics approach. Journal of Pharmacy & Pharmacognosy Research, 9(4): 435–445.
King, J. V., Liang, W.G., Scherpelz, K.P., Schilling, A.B., Meredith, S.C. & Tang, W.-J. 2014. Molecular Basis of Substrate Recognition and Degradation by Human Presequence Protease. https://www.sciencedirect.com/science/article/pii/S0969212614001439.
Kircik, L.H. 2021. Androgens and acne: perspectives on clascoterone, the first topical androgen receptor antagonist. Expert Opinion on Pharmacotherapy, 22(13): 1801–1806.
Kishore, N., Twilley, D., Blom Van Staden, A., Verma, P., Singh, B., Cardinali, G., Kovacs, D., Picardo, M., Kumar, V. & Lall, N. 2018. Isolation of Flavonoids and Flavonoid Glycosides from Myrsine africana and Their Inhibitory Activities against Mushroom Tyrosinase. Journal of Natural Products, 81(1): 49–56.
Lagunin, A., Stepanchikova, A., Filimonov, D. & Poroikov, V. 2000. PASS: prediction of activity spectra for biologically active substances. Bioinformatics, 16(8): 747–748.
Lipinski, C.A. 2004. Lead- and drug-like compounds: the rule-of-five revolution. Drug Discovery Today: Technologies, 1(4): 337–341. https://www.sciencedirect.com/science/article/pii/S1740674904000551.
Lipinski, C.A., Lombardo, F., Dominy, B.W. & Feeney, P.J. 2001. Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings1PII of original article: S0169-409X(96)00423-1. The article was originally published in Advanced Drug Delivery Reviews 23 (1997) 3. Advanced Drug Delivery Reviews, 46(1): 3–26. https://www.sciencedirect.com/science/article/pii/S0169409X00001290.
Nazir, Y., Rafique, H., Kausar, N., Abbas, Q., Ashraf, Z., Rachtanapun, P., Jantanasakulwong, K. & Ruksiriwanich, W. 2021. Methoxy-substituted tyramine derivatives synthesis, computational studies and tyrosinase inhibitory kinetics. Molecules, 26(9): 1–17.
Njoroge, F.G., Chen, K.X., Shih, N.-Y. & Piwinski, J.J. 2008. Challenges in Modern Drug Discovery: A Case Study of Boceprevir, an HCV Protease Inhibitor for the Treatment of Hepatitis C Virus Infection. Accounts of Chemical Research, 41(1): 50–59. https://doi.org/10.1021/ar700109k.
Nugroho, E.D., Ardiansyah, R., Kurniawan, N., Rahayu, A. & Sururi, A.M. 2023. An in-silico study on the chemical compounds from Macrophiothrix longipedia as antiviral compounds against covid-19. , 16(4): 2380–2390.
Olumide, Y.M., Akinkugbe, A.O., Altraide, D., Mohammed, T., Ahamefule, N., Ayanlowo, S., Onyekonwu, C. & Essen, N. 2008. Complications of chronic use of skin lightening cosmetics. International Journal of Dermatology, 47(4): 344–353. https://doi.org/10.1111/j.1365-4632.2008.02719.x.
Pires, D.E. V, Kaminskas, L.M. & Ascher, D.B. 2018. Prediction and optimization of pharmacokinetic and toxicity properties of the ligand. In Computational drug discovery and design. Springer: 271–284.
Polynice, V.M. 2024. Toxicity of mercury and hydroquinone in skin lightening products: popular practice in non-white communities.
Pradeepkiran, J.A., Yellapu, N.K. & Matcha, B. 2016. Modeling, molecular docking, probing catalytic binding mode of acetyl-CoA malate synthase G in Brucella melitensis 16M. Biochemistry and Biophysics Reports.
Rahmaningsih, S. & Pujiastutik, H. 2019. An in vitro and in silico evaluation of the antibacterial activity of the bioactive compounds in Majapahit (Crescentia cujete L.) fruit. Veterinary world, 12(12): 1959–1965.
Del Rosso, J.Q., Gold, L.S., Segal, J. & Zaenglein, A.L. 2019. An open-label, phase IV study evaluating lidose-isotretinoin administered without food in patients with severe recalcitrant nodular acne: low relapse rates observed over the 104-week post-treatment period. The Journal of Clinical and Aesthetic Dermatology, 12(11): 13.
Santhosh, P. & George, M. 2021. Clascoterone: a new topical anti‐androgen for acne management. International Journal of Dermatology, 60(12): 1561–1565.
Sheth, V.M. & Pandya, A.G. 2011. Melasma: a comprehensive update: part II. Journal of the American Academy of Dermatology, 65(4): 699–714.
Shivaram, K., Edwards, K. & Mohammad, T.F. 2024. An update on the safety of hydroquinone. Archives of Dermatological Research, 316(7): 378.
Sururi, A.M., Maharani, D.K. & Wati, F.A. 2023. POTENSI SENYAWA EUGENOL DARI CENGKEH (Syzygium aromaticum) SEBAGAI INHIBITOR PROTEASE HIV-1 (PR). Unesa Journal of Chemistry, (Vol 12 No 1 (2023): 26–30. https://ejournal.unesa.ac.id/index.php/unesa-journal-of-chemistry/article/view/52025/42268.
Sururi, A.M., Raihan, M., Aisa, E.R., Safitri, F.N., Constaty, I.C. & Tukiran. 2022. Anti-Inflammatory Activity of Stem Bark Dichloromethane Fraction Syzygium samarangense Extract as COX-2 Inhibitor: A Bioinformatics Approach. Jurnal Kimia Riset, 7(2): 94–100.
Sururi, A.M., Tukiran, T., Aisa, E.R. & Raihan, M. 2024. Identification of bioactive compounds and ADMET profile of stem bark of Syzygium samarangense and their potential as antibreast cancer and antiinflammatory. Journal of Applied Pharmaceutical Science, 14(02): 273–280.
Tollenaere, M. De, Boira, C., Chapuis, E., Lapierre, L., Jarrin, C., Robe, P., Zanchetta, C., Vilanova, D., Sennelier-Portet, B. & Martinez, J. 2022. Action of Mangifera indica leaf extract on acne-prone skin through sebum harmonization and targeting C. acnes. Molecules, 27(15): 4769.
Trott, O. & Olson, A.J. 2010. AutoDock Vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. Journal of computational chemistry, 31(2): 455–461. https://pubmed.ncbi.nlm.nih.gov/19499576.
Tukiran, T., Suyatno, S. & Safitri, F.N. 2021. Identification of the Chemical Constituents of the Selected Fraction of the Dichloromethane Extract of Syzygium samarangense Stem Bark Using LC-ESI-MS and Evaluation Its Potential as Antifungal Agent. Indonesian Journal of Chemistry, 21(2): 340–349.
Yue, Y., Liao, Z., Wang, Y., Liu, Q., Dong, J., Zhong, M., Chen, M., Pan, Y., Zhong, H. & Shang, J. 2024. Translocator protein ligand Ro5-4864 promotes melanogenesis in a TSPO independent manner.
Zaenglein, A.L., Pathy, A.L., Schlosser, B.J., Alikhan, A., Baldwin, H.E., Berson, D.S., Bowe, W.P., Graber, E.M., Harper, J.C. & Kang, S. 2016. Guidelines of care for the management of acne vulgaris. Journal of the American Academy of Dermatology, 74(5): 945–973.
Zolghadri, S., Bahrami, A., Hassan Khan, M.T., Munoz-Munoz, J., Garcia-Molina, F., Garcia-Canovas, F. & Saboury, A.A. 2019. A comprehensive review on tyrosinase inhibitors. Journal of enzyme inhibition and medicinal chemistry, 34(1): 279–309.
Published
2024-09-02
How to Cite
TUKIRAN, T.. BIOINFORMATICS STUDY: THE POTENCY OF Syzygium samarangense STEM BARK DICHLOROMETHANE EXTRACT AS ANTI-MELASMA AND ANTI-ACNE. Jurnal Kimia (Journal of Chemistry), [S.l.], p. 121-128, sep. 2024. ISSN 2599-2740. Available at: <https://ojs.unud.ac.id/index.php/jchem/article/view/108911>. Date accessed: 21 nov. 2024.
Section
Articles