PENDEKATAN TOP-DOWN DALAM ESTIMASI KETIDAKPASTIAN PENGUKURAN SUHU LELEH DAN PERUBAHAN ENTALPI MENGGUNAKAN DIFFERENTIAL SCANNING CALORIMETRY
Abstract
Berdasarkan SNI ISO/IEC17025:2017, laboratorium harus menerapkan sejumlah prosedur untuk pengendalian mutu internal. Salah satu persyaratannya adalah evaluasi ketidakpastian pengukuran Penelitian ini bertujuan untuk megevaluasi ketidakpastian pengukuran suhu leleh dan perubahan entalpi menggunakan alat Differential Scanning Calorimetry untuk mengestimasi tingkat ketidakpastian yang terkait dengan hasil pengukuran dan memahami sejauh mana hasil pengukuran merepresentasikan nilai sebenarnya dari suatu besaran. Penelitian ini dilakukan dengan pendekatan top-down menggunakan data intra-reprodusibilitas dengan bahan acuan standar kontrol Reference Material Certificate Indium Lot BD147. Estimasi ketidakpastian pengukuran dilakukan terhadap metode analisa penentuan suhu leleh dan perubahan entalpi menggunakan differential scanning calorimetry berdasarkan (ISO11357-3, 2018) tentang penentuan suhu dan perubahan entalpi peleburan dan kristalisasi. Berdasarkan parameter uji sesuai dengan ISO 11357-3 terhadap standar kontrol indium diperoleh hasil suhu leleh sebesar 156,55°C dengan besar ketidakpastian ± 0,71 dan perubahan entalpi sebesar 28,42 J/g dengan besar ketidakpastian ± 1,31 J/g pada tingkat kepercayaan 95%. Hasil ini dapat digunakan untuk memperkirakan rentang nilai benar pengukuran suhu leh dan perubahan entalpi berada.
Kata kunci: Differential Scanning Calorimetry, ketidakpastian pengukuran, pendekatan top-down, suhu leleh, perubahan entalpi
ABSTRACT
Based on the National Standard of SNI ISO/IEC17025:2017, laboratories must implement several procedures for internal quality control. One of which is the evaluation of measurement uncertainty. This research aimed to evaluate the measurement uncertainty on the melting temperature and enthalpy changes using Differential Scanning Calorimetry to estimate the uncertainty associated with measurement results and understand to what extent the measurement results represent a true quantity value. A top-down approach with intra-reproducibility data using the Reference Material Certificate Indium Lot BD147 control standard material was applied. The analytical method for determining the melting temperature and enthalpy change using differential scanning calorimetry was carried out based on ISO 11357-3, 2018, regarding the determination of melting and crystallization temperatures and enthalpy changes. Based on the test parameters by ISO 11357-3 for the indium control standard, the melting temperature result was 156.55°C with an uncertainty of ± 0.71, and the enthalpy change was 28.42 J/g with an uncertainty of ± 1.31 J/g at a 95% confidence level. These results can be used to estimate the true value range of the melting temperature and enthalpy change measurements.
Keywords: Differential Scanning Calorimetry, uncertainty, top-down approach, melting temperature, enthalpy change
Downloads
References
Rohani, S., Kurniah, K., & Nurjannah, N. (2021). Estimasi Ketidakpastian Pengukuran Dalam Metode Penentuan Total Suspended Solid (Tss) Secara Gravimetri. Buletin Teknik Litkayasa Akuakultur, 19(2), 109. https://doi.org/10.15578/blta.19.2.2021.109-112
Braga, F., Infusino, I., & Panteghini, M. (2015). Performance criteria for combined uncertainty budget in the implementation of metrological traceability. Clinical Chemistry and Laboratory Medicine, 53(6), 905–912. https://doi.org/10.1515/cclm-2014-1240
Ceriotti, F. (2018). Deriving proper measurement uncertainty from Internal Quality Control data: An impossible mission? Clinical Biochemistry, 57, 37–40. https://doi.org/10.1016/j.clinbiochem.2018.03.019
Coskun, A., İnal, B. B., & Serdar, M. (2019). Measurement uncertainty in laboratory medicine: The bridge between medical and industrial metrology. Turkish Journal of Biochemistry, 44(2), 121–125. https://doi.org/10.1515/tjb-2019-0170
EURACHEM/CITAC. (2012). Guide CG4: Quantifying Uncertainty in Analytical Measurement: Vol. 3er ed. www.eurachem.org/index.php/publications/guides/quam
Flávia Martinello, Nada Snoj, Milan Skitek, A. J. (2020). The top-down approach to measurement uncertainty: which formula should we use in laboratory medicine? Biochem Med (Zagreb). https://doi.org/10.11613/BM.2020.020101
Ginting, A. B., Indaryati, S., & Setiawan, J. (2005). Penentuan Parameter Uji dan Ketidakpastian Pengukuran Kapasitas Panas pada Differential Scanning Calorimeter. Jurnal Teknologi Bahan Nuklir, 1(1), 34–45.
ISO/IEC GUIDE 98-3/Suppl.1. (2008). Uncertainty of measurement Part 3 : Guide to the expression of uncertainty in measurement Supplement 1 : Propagation of distributions using a Monte Carlo method. https://www.bsigroup.com/contentassets/fb7f1499fa6f43c6b9084be8c2378bc9/iso_iec_guide_98-3_2008_suppl_1_2008e---propagation-of-distributions-using-a-monte-carlo-method.pdf
ISO 11357-1. (2016). Plastics — Differential scanning calorimetry (DSC) — Part 1: General principles. In International Standard Organization. https://cdn.standards.iteh.ai/samples/70024/4eeac42fae96493190707ae5d8c2b4a7/ISO-11357-1-2016.pdf
ISO 21748. (2017). Guidance for the use of repeatability, reproducibility and trueness estimates in measurement uncertainty evaluation. In International Organization for Standardization (Vols. 10406-1:20). https://cdn.standards.iteh.ai/samples/71615/84de0526ee93473fb468801553878ad0/ISO-21748-2017.pdf
ISO11357-3. (2018). Plastics — Differential scanning calorimetry (DSC) — Part 3: Determination of temperature and enthalpy of melting and crystallization. In International Standard Organization (Vol. 2018). https://cdn.standards.iteh.ai/samples/72460/286fb10f3c87463498653e9db865e59d/ISO-11357-3-2018.pdf
JCGM. (2012). International vocabulary of metrology – Basic and general concepts and associated terms ( VIM ) 3rd edition Vocabulaire international de métrologie – Concepts fondamentaux et généraux et termes associés ( VIM ) 3 e édition. Vim.
Kallner, A., Boyd, J., Duewer, D., Giroud, C., Hatjimihail, A., Klee, G., & et al. (2012). Expression of Measurement Uncertainty in Laboratory Medicine (Issue January 2012).
Korol, W., Rubaj, J., Bielecka, G., Walczyński, S., Reszko-Zygmunt, J., & Dobrowolski, R. (2017). Criteria for using proficiency test results for estimation of measurement uncertainty: feed analysis example. Accreditation and Quality Assurance, 22(2), 83–89. https://doi.org/10.1007/s00769-017-1252-1
Lee, J. H., Choi, J., Youn, J. S., Cha, Y. J., & Song, W. (2014). Comparison between bottom-up and top-down approaches in the estimation of measurement uncertainty. https://doi.org/10.1515/cclm-2014-0801
Menczel, J. D., & Prime, R. B. (2009). THERMAL ANALYSIS OF Fundamentals and Applications. https://doi.org/10.1016/S1369-7021(09)70183-X
Milinkovic, N., Ignjatovic, S., Sumarac, Z., & Majkic-Singh, N. (2018). Uncertainty of measurement in laboratory medicine. Journal of Medical Biochemistry, 37(3), 279–288. https://doi.org/10.2478/jomb-2018-0002
Rigo-Bonnin, R., Blanco-Font, A., & Canalias, F. (2018). Different top-down approaches to estimate measurement uncertainty of whole blood tacrolimus mass concentration values. Clinical Biochemistry, 57(February), 56–61. https://doi.org/10.1016/j.clinbiochem.2018.05.005
SNI ISO/IEC17025:2017. (2018). Implementasi SNI ISO/IEC 17025:2017 - Persyaratan Umum Kompetensi Laboratorium Pengujian dan Laboratorium Kalibrasi. In Badan Standarisasi Nasional. https://perpustakaan.bsn.go.id/repository/dcdf4bfc61c524fb89f0c7474778199a.pdf
Zhu, Z., Li, W., Yin, Y., Cao, R., & Li, Z. (2022). Differential Scanning Calorimetry Material Studies: Benzil Melting Point Method for Eliminating the Thermal History of DSC. Journal of Chemistry, 2022. https://doi.org/10.1155/2022/3423429
Zilli, M., Arpa, F. V. G., Unico, S. L., & Gorizia, L. (2013). A Practical Guide to the Calculation of Uncertainty of Measurement. 20–26. https://doi.org/10.2174/1874340401306010020
This work is licensed under a Creative Commons Attribution 4.0 International License