Implementation of constructed wetland technology as a nature-based solution for environmental improvement at the upper reach of the Moskva River

  • Shmonin Kirill Lomonosov Moscow State University, Moscow, Russia
  • Natalia Korshunova Lomonosov Moscow State University, Moscow, Russia
  • Elizaveta Derevenec Lomonosov Moscow State University, Moscow, Russia
  • Veronica Volkova Lomonosov Moscow State University, Russia
  • Maria Lazareva Lomonosov Moscow State University, Moscow, Russia
  • Olga Denisova Lomonosov Moscow State University, Moscow, Russia
  • Daniil Barbashin Lomonosov Moscow State University, Moscow, Russia
  • Zlata Bondar Lomonosov Moscow State University, Moscow, Russia
  • Sergey Kharitonov Lomonosov Moscow State University, Moscow, Russia

Abstract

Moskva River is an important freshwater ecosystem for the capital region of Russia but is under the constant anthropogenic influence that, to many extents, harms its water quality. A solution has been proposed to improve the river water quality with constructed wetlands in the suburbs of Moscow. The model settlement was Ilyinsky, with a population of 500 living near the river. Wastewater volume, pollutant concentration, and mass flow rate were calculated. Furthermore, local terrains and Russian legal requirements were considered in formulating the design. Based on current river water conditions, it is necessary to build a vertical flow constructed wetland with an area of at least 3.94 m2 per person. It was also estimated that treatment efficiency and pollutant flow into the river would decrease, which should lead to improved water quality at the monitoring point ’Rublevo’. In addition, the research found other small settlements without access to sewage treatment plants. After data extrapolation, introducing the constructed wetlands will expectedly lead to higher-quality water on the Rublevo section. For instance, TSS will decrease from 20.88 to 5.93 mg/l, Total Nitrogen from 1.71 to 0.21 mg/l, and BOD5 from 211 to its natural value—a similar potential change is observed from NH4 + (currently, 0.07 mg/l) and Total Phosphorus (0.16 mg/l). In conclusion, the implementation of the constructed wetlands in the region can improve water quality

Downloads

Download data is not yet available.

References

Озерова, Н. А. (2014). Москва-река в пространстве и времени. Прогресс-Традиция.
Правительство Москвы, Департамент природопользования и охраны окружающей среды (2019), «О состоянии окружающей среды в городе Москве в 2018 году», Студио Арроу, Москва.
Яшин Иван Михайлович, Васенев Иван Иванович, Гареева Ирина Викторовна, & Черников Владимир Александрович (2015). Экологический мониторинг вод Москвы-реки в столичном мегаполисе. Известия Тимирязевской сельскохозяйственной академии, (5), 8-25.
Brion, N., Verbanck, M. A., Bauwens, W., Elskens, M., Chen, M., & Servais, P. (2015). Assessing the impacts of wastewater treatment implementation on the water quality of a small urban river over the past 40 years. Environmental Science and Pollution Research, 22(16), 12720-12736. https://doi.org/10.1007/s11356-015-4493-8
Coulter, A. A., Brey, M. K., Lubejko, M., Kallis, J. L., Coulter, D. P., Glover, D. C., ... & Garvey, J. E. (2018). Multistate models of bigheaded carps in the Illinois River reveal spatial dynamics of invasive species. Biological Invasions, 20(11), 3255-3270. https://doi.org/10.1007/s10530-018-1772-6
Davis, L. (1995). A handbook of constructed wetlands: A guide to creating wetlands for: agricultural wastewater, domestic wastewater, coal mine drainage, stormwater. In the Mid-Atlantic Region. Volume 1: General considerations. USDA-Natural Resources Conservation Service.
De Ceballos, B. S. O., Oliveira, H., Meira, C. M. B. S., Konig, A., Guimaraes, A. O., & De Souza, J. T. (2001). River water quality improvement by natural and constructed wetland systems in the tropical semi-arid region of Northeastern Brazil. Water science and technology, 44(11-12), 599-605. https://doi.org/10.2166/wst.2001.0886
Eremina, N., Paschke, A., Mazlova, E. A., & Schüürmann, G. (2016). Distribution of polychlorinated biphenyls, phthalic acid esters, polycyclic aromatic hydrocarbons and organochlorine substances in the Moscow River, Russia. Environmental Pollution, 210, 409-418. https://doi.org/10.1016/j.envpol.2015.11.034
Jechow, A., & Hölker, F. (2019). How dark is a river? Artificial light at night in aquatic systems and the need for comprehensive night‐time light measurements. Wiley Interdisciplinary Reviews: Water, 6(6), e1388. https://doi.org/10.1002/wat2.1388
Jin, Z., Zhang, X., Li, J., Yang, F., Kong, D., Wei, R., Huang, K., Zhou, B. (2017). Impact of wastewater treatment plant effluent on an urban river. Journal of Freshwater Ecology, 32(1), 697-710. https://doi.org/10.1080/02705060.2017.1394917
Jing, S. R., Lin, Y. F., Lee, D. Y., & Wang, T. W. (2001). Nutrient removal from polluted river water by using constructed wetlands. Bioresource Technology, 76(2), 131-135. https://doi.org/10.1016/S0960-8524(00)00100-0
Kadlec, R. H., & Hey, D. L. (1994). Constructed wetlands for river water quality improvement. Water Science and Technology, 29(4), 159-168. https://doi.org/10.2166/wst.1994.0181
Kennedy, G., & Mayer, T. (2002). Natural and constructed wetlands in Canada: An overview. Water Quality Research Journal, 37(2), 295-325. https://doi.org/10.2166/wqrj.2002.020
Kraft, M. E. (2006). Sustainability and water quality: Policy evolution in Wisconsin’s Fox-Wolf River basin. Public Works Management & Policy, 10(3), 202-213. https://doi.org/10.1177/1087724X06287498
Lawton, H.W., Wilke, P.J. (1979). Ancient Agricultural Systems in Dry Regions. In: Hall, A.E., Cannell, G.H., Lawton, H.W. (eds) Agriculture in Semi-Arid Environments. Ecological Studies, vol 34. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-67328-3_1
Li, L., Li, Y., Biswas, D. K., Nian, Y., & Jiang, G. (2008). Potential of constructed wetlands in treating the eutrophic water: evidence from Taihu Lake of China. Bioresource technology, 99(6), 1656-1663. https://doi.org/10.1016/j.biortech.2007.04.001
Mackay, D. (1945). Ancient river beds and dead cities. Antiquity, 19(75), 135-144. https://doi.org/10.1017/S0003598X00022675
Martínez-Santos, M., Lanzén, A., Unda-Calvo, J., Martín, I., Garbisu, C., & Ruiz-Romera, E. (2018). Treated and untreated wastewater effluents alter river sediment bacterial communities involved in nitrogen and sulphur cycling. Science of the Total Environment, 633, 1051-1061. https://doi.org/10.1016/j.scitotenv.2018.03.229
McGrane, S. J. (2016). Impacts of urbanisation on hydrological and water quality dynamics, and urban water management: a review. Hydrological Sciences Journal, 61(13), 2295-2311.https://doi.org/10.1080/02626667.2015.1128084
Miara, A., Vörösmarty, C. J., Macknick, J. E., Tidwell, V. C., Fekete, B., Corsi, F., & Newmark, R. (2018). Thermal pollution impacts on rivers and power supply in the Mississippi River watershed. Environmental Research Letters, 13(3), 034033. https://doi.org/10.1088/1748-9326/aaac85
Notteboom, T., Yang, D., & Xu, H. (2020). Container barge network development in inland rivers: A comparison between the Yangtze River and the Rhine River. Transportation Research Part A: Policy and Practice, 132, 587-605. https://doi.org/10.1016/j.tra.2019.10.014
Pokhrel, Y., Burbano, M., Roush, J., Kang, H., Sridhar, V., & Hyndman, D. W. (2018). A review of the integrated effects of changing climate, land use, and dams on Mekong River hydrology. Water, 10(3), 266. https://doi.org/10.3390/w10030266
Razali, A., Syed Ismail, S. N., Awang, S., Praveena, S. M., & Zainal Abidin, E. (2018). Land use change in highland area and its impact on river water quality: a review of case studies in Malaysia. Ecological processes, 7(1), 1-17. https://doi.org/10.1186/s13717-018-0126-8
Shchegolkova, N., Shmonin, K., Emelyanov, A., Kozlova, M. (2018). The Moskva River Today and Tomorrow. Priroda, (10), 28-37. https://doi.org/10.31857/S0032874X0001449-2
Sheng-Bing, H. E., Li, Y., Hai-Nan, K. O. N. G., Zhi-Ming, L. I. U., De-Yi, W. U., & Zhan-Bo, H. U. (2007). Treatment efficiencies of constructed wetlands for eutrophic landscape river water. Pedosphere, 17(4), 522-528. https://doi.org/10.1016/S1002-0160(07)60062-9
Torrens, A., Folch, M., & Salgot, M. (2021). Design and performance of an innovative hybrid constructed wetland for sustainable Pig slurry treatment in small farms. Frontiers in Environmental Science, 8, 577186. https://doi.org/10.3389/fenvs.2020.577186
Tu, Y. T., Chiang, P. C., Yang, J., Chen, S. H., & Kao, C. M. (2014). Application of a constructed wetland system for polluted stream remediation. Journal of hydrology, 510, 70-78. https://doi.org/10.1016/j.jhydrol.2013.12.015
UN-HABITAT, Constructed Wetlands Manual. (2008). UN-HABITAT Water for Asian Cities Programme Nepal.
Wang, Q., Liang, J., Zhao, C., Bai, Y., Liu, R., Liu, H., & Qu, J. (2020). Wastewater treatment plant upgrade induces the receiving river retaining bioavailable nitrogen sources. Environmental Pollution, 263, 114478. https://doi.org/10.1016/j.envpol.2020.114478
Yustiani, Y. M., Nurkanti, M., Suliasih, N., & Novantri, A. (2018). Influencing parameter of self-purification process in the urban area of Cikapundung River, Indonesia. GEOMATE Journal, 14(43), 50-54. https://doi.org/10.21660/2018.43.3546
Zhang, X., Zhang, Y., Shi, P., Bi, Z., Shan, Z., & Ren, L. (2021). The deep challenge of nitrate pollution in river water of China. Science of the Total Environment, 770, 144674. https://doi.org/10.1016/j.scitotenv.2020.144674
Published
2023-02-28
How to Cite
KIRILL, Shmonin et al. Implementation of constructed wetland technology as a nature-based solution for environmental improvement at the upper reach of the Moskva River. International Journal of Biosciences and Biotechnology, [S.l.], v. 1, n. 1, p. 60 - 78, feb. 2023. ISSN 2655-9994. Available at: <https://ojs.unud.ac.id/index.php/jbb/article/view/98854>. Date accessed: 09 jan. 2025.