POTENSI SIANIDIN POLY(LACTIC-CO-GLYCOLIC ACID)-POLYETHYLEN GLYCOL YANG DIMODIFIKASI FUSED FOLLICLE UNTUK MENINGKATKAN SENSITIVITAS DAN SEKRESI INSULIN DALAM MENANGANI PENYAKIT DIABETES MELITUS TIPE 2
Abstract
ABSTRAK
Pendahuluan: Diabetes melitus tipe 2 merupakan salah satu dari empat prioritas penyakit tidak menular menurut WHO. Data WHO pada tahun 2015 menunjukkan bahwa sebanyak 415 juta jiwa di dunia menderita diabetes melitus tipe 2. Bahkan di Indonesia pada tahun 2013, prevalensi orang dengan diabetes mengalami peningkatan menjadi 6.9%. Saat ini penatalaksanaan untuk diabetes melitus tipe 2 yang umum diberikan adalah pemberian obat metformin. Namun pemberian jangka panjang akan menyebabkan asidosis laktat dan kerusakan ginjal. Karena hal tersebut, maka dibutuhkan alternatif yang dapat baru yang meminimalisir efek samping yang ditimbulkan, sebagai contoh dengan menggunakan bahan herbal. Cyanidin adalah flavonoid alami yang memiliki efek sebagai peningkat sensitivitas dan sekresi insulin.
Pembahasan: Cyanidin berpotensi sebagai peningkat sensitivitas reseptor insulin dan meningkatkan sekresi insulin. Dalam upaya meningkatkan sensitivitas insulin, cyanidin mampu menghambat penurunan regulasi ekspresi Glut4 dan menurunkan tingkat ekspresi RBP 4. Sebagai peningkat sekresi insulin Cyanidin meningkatkan ekspresi gen GLUT2, Kir6.2 dan Cav1.2 yang berperan dalam sekresi insulin. Sayangnya Cyanidin memiliki bioavaibility rendah dan tidak stabil. Oleh karena itu enkapsulasi Cyanidin akan meningkatkan ketersediaan cyandin dalam darah dan mudah terkonsentrasi ke sel pankreas
Simpulan: Kombinasi Cyanidin PLGA-PEG yang dimodifikasi FC dapat menjadi alternatif baru dalam pengobatan penyakit diabetes melitus tipe 2
Kata kunci: Diabetes Melitus tipe 2, Cyanidin, PLGA-PEG yang dimodifikasi Fc
Downloads
References
2. K D, years N, possible Y. Number of people living with diabetes doubles in twenty years [Internet]. Diabetes UK. 2018 [diakses 8 November 2018]. Dapat diakses di :https://www.diabetes.org.uk/about_us/news/diabetes-prevalence-statistics
3. Diabetes Drugs [Internet]. Diabetes.co.uk. 2018 [diakses 8 November 2018]. Dapat diakses di : https://www.diabetes.co.uk/Diabetes-drugs.html
4. List of Common Diabetes Medications [Internet]. Healthline. 2018 [diakses 8 November 2018]. Dapat diakses di : https://www.healthline.com/health/diabetes/medications-list
5. Metformin: medicine to treat type 2 diabetes - NHS.UK [Internet]. NHS.UK. 2018 [diakses 8 November 2018]. Dapat diakses di : https://beta.nhs.uk/medicines/metformin/
6. Abu Bakar M, Ismail N, Isha A, Mei Ling A. Phytochemical Composition and Biological Activities of Selected Wild Berries (Rubus moluccanusL.,R. fraxinifoliusPoir., andR. alpestrisBlume). Evidence-Based Complementary and Alternative Medicine. 2016;2016:1-10.
7. Suantawee, Tanyawan; T.Elazab, Sara; Hsu, Walter H. Cyanidin Stimulates Insulin Secretion and Pancreatic β-Cell Gene Expression through Activation of L-type Voltage-Dependent Ca2+ Channel.Nutrients.2017, 9,814-828
8. Sasaki R, Nishimura N, Hoshino H, Isa Y, Kadowaki M, Ichi T et al. Cyanidin 3-glucoside ameliorates hyperglycemia and insulin sensitivity due to downregulation of retinol binding protein 4 expression in diabetic mice. Biochemical Pharmacology. 2008;74(11):1619-1627.
9. De Ferrars R, Czank C, Zhang Q, Botting N, Kroon P, Cassidy A et al. The pharmacokinetics of anthocyanins and their metabolites in humans. British Journal of Pharmacology. 2014;171(13):3268-3282.
10. Wang Y, Sun T, Zhang Y, Chaurasiya B, Huang L, Liu X et al. Exenatide loaded PLGA microspheres for long-acting antidiabetic therapy: preparation, characterization, pharmacokinetics and pharmacodynamics. RSC Advances. 2016;6(44):37452-37462.
11. Makadia H, Siegel S. Poly Lactic-co-Glycolic Acid (PLGA) as Biodegradable Controlled Drug Delivery Carrier. Polymers. 2011;3(3):1377-1397.
12. Shi Y, Sun X, Zhang L, Sun K, Li K, Li Y et al. Fc-modified exenatide-loaded nanoparticles for oral delivery to improve hypoglycemic effects in mice. Scientific Reports. 2018;8(1).
13. Cyanidin [Internet]. Phytochemicals.info. 2019 [cited 2 January 2019]. Available from: http://www.phytochemicals.info/phytochemicals/cyanidin.php
14. Amin F, Shah S, Badshah H, Khan M, Kim M. Anthocyanins encapsulated by PLGA@PEG nanoparticles potentially improved its free radical scavenging capabilities via p38/JNK pathway against Aβ1–42-induced oxidative stress. Journal of Nanobiotechnology. 2017;15(1).
15. Li M, Panagi Z, Avgoustakis K, Reineke J. Physiologically based pharmacokinetic modeling of PLGA nanoparticles with varied mPEG content. Int J Nanomedicine. 2012;7:1345–56.
16. Pridgen E, Alexis F, Kuo T, Levy-Nissenbaum E, Karnik R, Blumberg R et al. Transepithelial Transport of Fc-Targeted Nanoparticles by the Neonatal Fc Receptor for Oral Delivery. Science Translational Medicine. 2013;5(213):213ra167-213ra167.
17. Velioglu Y, Mazza G, Gao L, Oomah B. Antioxidant Activity and Total Phenolics in Selected Fruits, Vegetables, and Grain Products. Journal of Agricultural and Food Chemistry. 1998;46(10):4113-4117.
18. Zhishen J, Mengcheng T, Jianming W. The determination of flavonoid contents in mulberry and their scavenging effects on superoxide radicals. Food Chemistry. 1999;64(4):555-559.
19. Hoffman A. Corrigendum to “The early days of PEG, PEGylation (1970s–1990s)” [Acta Biomater. 40 (2016) 1–5]. Acta Biomaterialia. 2017;49:606.
20. Li W, Chen S, Zhou G, Li H, Zhong L, Liu S. Potential role of cyanidin 3-glucoside (C3G) in diabetic cardiomyopathy in diabetic rats: An in vivo approach. Saudi Journal of Biological Sciences. 2018;25(3):500-506.
21. Jeon S, Han S, Lee J, Hong T, Yim D. The Safety and Pharmacokinetics of Cyanidin-3-Glucoside after 2-Week Administration of Black Bean Seed Coat Extract in Healthy Subjects. The Korean Journal of Physiology & Pharmacology. 2012;16(4):249.
22. Lawrence SA, Blankenship R, Brown R, Estwick S, Ellis B, Thangaraju A, et al. Influence of FcRn binding properties on the gastrointestinal absorption and exposure profile of Fc molecules. Bioorganic Med Chem [Internet]. 2021;32 (November 2020):115942. Available from: https://doi.org/10.1016/j.bmc.2020.115942
23. Rekha M, Sharma C. Oral delivery of therapeutic protein/peptide for diabetes – Future perspectives. International Journal of Pharmaceutics. 2013;440(1):48-62.
24. Banerjee A, Lee J, Mitragotri S. Intestinal mucoadhesive devices for oral delivery of insulin. Bioengineering & Translational Medicine. 2016;1(3):338-346.
25. Shrestha N, Araújo F, Shahbazi M, Mäkilä E, Gomes M, Airavaara M et al. Oral hypoglycaemic effect of GLP-1 and DPP4 inhibitor based nanocomposites in a diabetic animal model. Journal of Controlled Release. 2016;232:113-119.
26. Kobes J, Daryaei I, Howison C, Bontrager J, Sirianni R, Meuillet E et al. Improved Treatment of Pancreatic Cancer With Drug Delivery Nanoparticles Loaded With a Novel AKT/PDK1 Inhibitor. Pancreas. 2016;45(8):1158-1166.
27. Yamaguchi S, Katahira H, Osawa S, Nakamichi Y, Tanaka T, Shimoyama T, et al. Activators of AMP-activated protein kinase enhance GLUT4 translocation and its glucose transport activity in 3T3-L1 adipocytes. Am J Physiol Endcrinol Metab 2015;289:E643-9
28. Kamal, R., Novendrianto, D., Chadijah, F., Prasetya, G., Pratama, G., Ariadnya, M., Larasati, N., Darain, N., Nanda, O., Mavita, S., Usamah, U. and Prajitno, J. (2017). DIABETES RISK FACTOR SCREENING IN ADULTS USING PERKENI QUESTIONNAIRE AND ORAL GLUCOSE TOLERANCE TEST IN SOCAH COUNTY, BANGKALAN. Folia Medica Indonesiana, 53(3), p.199.