POTENSI ZEOLIT ALAM ENDE SEBAGAI MEDIA ADSORBEN KOMPETITIF PEWARNA BIRU METILENA DAN METIL ORANYE
Abstract
ABSTRAK: Limbah yang berasal dari industri tekstil dianggap sebagai sumber potensial pencemaran lingkungan khususnya air karena mengandung pewarna yang berbahaya. Dalam penelitian ini zeolit alam digunakan sebagai alternatif adsorben yang efektif dan efisien untuk mengatasi pencemaran akibat pewarna biru metilena dan metil oranye. Aktivasi zeolit alam dilakukan dengan larutan HCl 3 M dan dikarakterisasi menggunakan difraksi sinar-X (XRD) dan Scanning Electron Microscope (SEM). Proses adsorpsi biru metilena dan metil oranye dipelajari pada variasi bobot adsorben, waktu kontak, dan pH. Konsentrasi zat pewarna yang tertinggal dalam larutan diamati dengan instrumen Spektrofotometer UV-Vis. Hasil penelitian menunjukkan bahwa kapasitas adsorpsi zeolit alam dalam menjerap biru metilena sebesar 21,189 mg/g dan dan metil oranye sebesar 18,208 mg/g. Kondisi optimum adsorpsi biru metilena dan metil oranye dicapai dengan bobot adsorben berturut-turut 0,3 g dan 0,4 g, waktu kontak berturut-turut 60 menit dan 90 menit, serta pH berturut-turut 6 dan 2. Faktor bobot adsorben, waktu kontak, dan pH memberikan pengaruh terhadap penjerapan biru metilena maupun metil oranye oleh zeolit alam Ende.
ABSTRACT: Waste from the textile industry is considered as a potential source of environmental pollution, especially water because it contains dangerous dyes. In this research, natural zeolite was used as an effective and efficient alternative adsorbent to overcome pollution caused by methylene blue and methyl orange dyes. Activation of natural zeolite was carried out with aqueous solution of HCl 3 M and characterized using X-Ray Diffraction (XRD) and Scanning Electron Microscope (SEM). The methylene blue and methyl orange adsorption processes were studied on various weight of the adsorbent, contact time, and pH. The concentration of dyes remaining in the solution was observed with Spectrophotometer UV-Vis. The results showed that the adsorption capacities of activated natural zeolite were 21.189 mg / g and 18.208 mg / g for methylene blue and methyl orange, respectively. The optimum conditions of methylene blue were 0.3 g of adsorbent weight, 60 minutes of contact time, and 6 of pH while for the methyl orange adsorption were achieved at 0,4 g of adsorbent weight, 90 minutes of contact time and 2 of pH.
Downloads
References
[2] Kahoul I, Bougdah N, Djazi F., Djilani C., Magri P., Medjram M.S. Removal of methylene blue by adsorption onto activated carbons produced from agricultural wastes by microwave induced koh activation, Chemistry and Chemical Technology. 2018, 13(3),365-371.
[3] Beldean-Galea S.M., Copaciu F.M., Coman, M.V. Chromatographic analysis of textile dyes, Journal of AOAC International. 2018, 101(5), 1353-1370.
[4] Lv S., Liu J.M., Ma H., Wang Z., Li C., Zhao N., Wang, S. Simultaneous adsorption of methyl orange and methylene blue from aqueous solution using amino functionalized Zr-based MOFs, Microporous and Mesoporous Materials. 2019, 282, 179-187.
[5] Liu Y., Zhu W., Guan K., Peng C., Wu, J. Freeze-casting of alumina ultra-filtration membranes with good performance for anionic dye separation, Ceramics International. 2018, 44, 11901-11904.
[6] Zhang J., Chen S., Zhang Y., Quan X., Zhao H., Zhang, Y. Reduction of acute toxicity and genotoxicity of dye effluent using fenton-coagulation process, Journal Hazard Materials. 2014, 274, 198-204.
[7] Kaushik P.A., Malik. Process optimization for efficient dye removal by Aspergillus lentulus FJ172995, Journal Hazard Materials. 2011, 185, 837-843.
[8] Hossainn K., Quaik S., Ismail N., Raffatullah M., Avasan M., Shaik, R. Bioremediation and detoxification of the textile wastewater with membrane bioreactor using the white-rot fungus and reuse of wastewater, Iran Journal Biotechnology. 2016, 14(3), 154-162.
[9] Fu J., Xin Q., Wu X., Chen Z., Yan Y., Liu S., Wang M., Xu, Q. Selective adsorption and separation of organic dyes from aqueous solution on polydopamine microspheres, Journal Colloid Interface Science. 2016, 461, 292-304.
[10] Ngapa Y.D. Study of the acid-base effect on zeolite activation and its characterization as adsorbent of methylene blue dye, Jurnal Kimia dan Pendidikan Kimia. 2017, 2(2), 90-96.
[11] Lu X., Wang F., Li X., Shih K., Zeng E.Y. Adsorption and thermal stabilization of Pb2+ and Cu2+ by zeolite, Industrial and Engineering Chemistry Research. 2016, 55(32), 8767-8773.
[12] Gougazeh M., Buhl J.C. Synthesis and characterization of zeolite A by hydrothermal transformation of natural Jordanian kaolin, Journal of the Association of Arab Universities for Basic and Applied Science. 2014, 15, 35-42.
[13] Arryanto., Suwardi., Husaini., Affandi T., Amini S., Al-Jabri M., Siagian P., Setyorini D., Rahman A., Pujiastuti Y. Zeolit dan masa depan bangsa. Yogyakarta (ID), Imperium Pr, 2012
[14] Ngapa Y.D., Sugiarti S., Abidin Z. Hydrothermal transformation of natural zeolite from Ende-NTT and its application as adsorbent of cationic dye, Indonesian Journal of Chemistry. 2016, 16(2), 138-143.
[15] Mekatel E.H., Amokrane S., Aid, A., Nibou D., Trari M. Photocatalytic reduction of Cr(VI) on nanosized Fe2O3 supported on natural Algerian clay: Characteristics, kinetic and thermodynamic study, Comptes Rendus Chimie. 2015, 18(3), 336-344.
[16] Kim K., Ahn H. The effect of pore structure of zeolite on the adsorption of VOCs and their desorption properties by microwave heating, Microporous and Mesoporous Materials. 2011, 152, 78-83.
[17] Wang Y., Li H., Gu L., Gan Q., Li Y., Calzaferri G. Thermally stable luminescent lanthanide complexes in zeolite L, Microporous and Mesoporous Materials. 2009, 121, 1-6.
[18] Mansouri N., Rikhtegar N. Porosity, characterization and structural properties of natural zeolite clinoptilolite as a sorbent, Environment Protection Engineering. 2013, 39(1), 139-147.
[19] Moradi S.E., Nasrollahpour A. Competitive adsorption and photodegradation of Methyl orange and Rhodamine B by TiO2 modified mesoporous carbon photo-catalyst on UV irradiation, Materials Technology. 2017, 32(12), 716-723.
[20] Sivalingam S., Sen S. Efficient removal of textile dye using nanosized fly ash derived zeolite-x: Kinetics and process optimization study, Journal of the Taiwan Institute of Chemical Engineers. 2019, 96, 305-314.
[21] Pandey P.K., Sharma S.K., Sambi S.S. Removal of lead(II) from waste water on zeolite-NaX, Journal of Enviromental Chemichal Engineering. 2015, 3(4), 2604-2610.
[22] Prasetyo W.E., Kusumaningsih T., Firdaus M. Highly efficient and green synthesis of diacylphloroglucinol over treated natural zeolite mordenite and the optimization using response surface method (RSM), Synthetic Communication Journal. 2019, 49(23), 3352-3372.
[23] Auta M., Hameed B. Chitosan–clay composite as highly effective and low-cost adsorbent for batch and fixed-bed adsorption of methylene blue, Chemichal Engineering Journal. 2014, 237 (1) 352-361.
[24] Rasouli M., Yaghobi N., Hafezi M., Rasouli M. Effect of nanocrystalline zeolite Na-Y on meta-xylene separation, Journal of Industrial and Engeneering Chemistry. 2012, 18, 1970-1976.