Seismic Subduction Zone Modeling Based on Earthquake Data in Gorontalo and Surrounding Areas
Abstract
The Gorontalo region is located in an active tectonic zone, so it has a high level of seismic activity. Understanding the geometry of the subduction zone in this region is important for assessing earthquake hazards and disaster mitigation efforts. This study models the angle and depth of subduction of the subduction plate beneath the surface of the Gorontalo region using earthquake data from the USGS catalog from 1994 to 2024. The analysis was carried out using the vertical section method (cross-section), which divides the study area into three segments, namely A, B, and C. Each segment was analyzed using polynomial regression to determine the subduction pattern. The results show that the megathrust zone is at a depth of < 50 km, while the Benioff zone reaches up to 300 km. The obtained subduction angles are 49.01°-59.09° in Segment A, 6.49°-71.76° in Segment B, and 19.87°-58.15° in Segment C. These results show variations in subduction geometry that reflect the tectonic complexity of the Gorontalo region.
Downloads
References
[2] G. Pasau and A. Tanauma, “PEMODELAN SUMBER GEMPA DI WILAYAH SULAWESI UTARA SEBAGAI UPAYA MITIGASI BENCANA GEMPABUMI,” JIS, vol. 15, no. 1, p. 202, Oct. 2011, doi: 10.35799/jis.11.2.2011.208.
[3] A. M. M. Huda and N. K. El Ridho, “ANALISIS SEISMISITAS SULAWESI BERDASARKAN DATA KEGEMPAAN PERIODE 2008-2018,” petro.j.ene.techno., vol. 1, no. 2, pp. 34–43, Oct. 2019, doi: 10.58267/petrogas.v1i2.26.
[4] I. U. Meidji et al., “Analyzing Seismicity Pattern of the Gorontalo Region and Its Surroundings in the Form of Hypocenter Relocation Using Double Difference Method,” jppipa, pendidikan ipa, fisika, biologi, kimia, vol. 9, no. 10, pp. 8581–8587, Oct. 2023, doi: 10.29303/jppipa.v9i10.5400.
[5] H. D. Rachmadhan, J. H. M. Djaya, and H. E. S. Adam, “POTENSI GEOWISATA BERBASIS KENAMPAKAN TANJUNG DAN FENOMENA SHEETING JOINT TANJUNG LELAPIDE PULAU SANGIHE SULAWESI UTARA,” vol. 02, no. 01.
[6] A. Agustiawati, I. B. H. Mei, and M. Si, “STUDI B-VALUE UNTUK ANALISIS SEISMISITAS BERDASARKAN DATA GEMPABUMI PERIODE 1904-2014 (Studi Kasus: Gorontalo)”.
[7] A. Wahyuni, “ANALISIS SEISMISITAS SULAWESI BARATBERDASARKAN DATA GEMPA 1967-202,” 2021.
[8] S. Nurrahmi, “ANALISIS SEISMISITAS GEMPABUMI SEDANG DI WILAYAH SULAWESI PADA BULAN FEBRUARI 2022 MENGGUNAKAN ANALISA SEISCOMP3,” vol. 2, 2022.
[9] M. Demulawa and I. Daruwati, “ANALISIS FREKUENSI NATURAL DAN POTENSI AMPLIFIKASI MENGGUNAKAN METODE HVSR (Studi Kasus: Kampus 4 Universitas Negeri Gorontalo),” vol. 10, no. 1.
[10] . N., G. Pasau, and S. S. Raharjo, “Identifikasi Sesar di Wilayah Gorontalo dengan Analisis Mekanisme Bola Fokus,” JM, vol. 3, no. 1, p. 40, Mar. 2014, doi: 10.35799/jm.3.1.2014.3905.
[11] H. A. Efendi, G. I. Marliyani, and S. Pramumijoyo, “Recent faulting along Gorontalo fault based on seismicity data analysis and lineament mapping,” E3S Web Conf., vol. 325, p. 01013, 2021, doi: 10.1051/e3sconf/202132501013.
[12] A. Z. Ramadhanty, A. Febrianty, A. M. Utomo, and A. Widodo, “IDENTIFIKASI DAN KARAKTERISASI GEMPA INTRASLAB DI PULAU JAWA 2017-2021 DENGAN METODE SEGMEN IRISAN VERTIKAL (STUDI KASUS GEMPA INTRASLAB TASIKMALAYA),” JGE, vol. 10, no. 3, pp. 178–190, Nov. 2024, doi: 10.23960/jge.v10i3.341.
[13] D. Bulo and B. Hendrawanto, “PENENTUAN TITIK EPICENTER DAN HYPOCENTER SERTA PARAMETER MAGNITUDE GEMPABUMI BERDASARKAN DATA SEISMOGRAM,” vol. 3, 2020.
[14] Santoso and A. Soehami, “Analisis Bahaya Gempabumi Lengan Utara Sulawesi.,” JSDG, 20, 2010.
[15] L. W, Fundamentals of Geophysics, Second Edition. USA: Cambridge University Press., 2007.
[16] H. Murtianto, “POTENSI KERUSAKAN GEMPABUMI AKIBAT PERGERAKAN PATAHAN SUMATERA DI SUMATERA BARAT DAN SEKITARNYA,” Jurnal Pendidikan Geografi, vol. 10, no. 1, Mar. 2016, doi: 10.17509/gea.v10i1.1667.