Effect of Carbonization Temperature on the Physical and Electrochemical Properties of Carbon Electrodes from Kepayang Leaves (Pangium Edule Reinw) as Supercapacitor Cells

Abstract

The increasing demand for renewable energy resources, supercapacitors are becoming important devices due to their high specific energy and specific power performance. This research focuses on using Kepayang leaves as a basic material for supercapacitor carbon electrodes. This research involves making active carbon from Kepayang leaves through a carbonization process at temperatures of 500, 600, 700, and 800 oC for 1 hour with chemical activation using ZnCl2. The characteristics carried out include density analysis, Fourier Transform Infra-Red (FTIR), X-ray diffraction (XRD), and Cyclic Voltammetry (CV). The density analysis results show that with every increase in temperature, the density decreases. Functional groups in the FTIR spectrum show that C bonds are formed, while XRD analysis shows an amorphous structure both before and after pyrolysis. The electrochemical properties of Kepayang leaf carbon show that the diffusion process is getting better as the carbonization temperature is higher. The highest specific capacitance obtained was based on the results of CV 91 F/g at a temperature of 700 oC.

Downloads

Download data is not yet available.

References

[1] M. Shanmuga Priya, P. Divya, and R. Rajalakshmi, A review status on characterization and electrochemical behaviour of biomass derived carbon materials for energy storage supercapacitors, Sustain. Chem. Pharm., vol. 16, no. March, p. 100243, 2020, doi: 10.1016/j.scp.2020.100243.
[2] A. Apriwandi, E. Taer, R. Farma, et al., A facile approach of micro-mesopores structure binder-free coin/monolith solid design activated carbon for electrode supercapacitor, J. Energy Storage, vol. 40, no. June, p. 102823, 2021, doi: 10.1016/j.est.2021.102823.
[3] P. Febriyanto, J. Jerry, A. W. Satria, et al., Pembuatan Dan Karakterisasi Karbon Aktif Berbahan Baku Limbah Kulit Durian Sebagai Elektroda Superkapasitor, J. Integr. Proses, vol. 8, no. 1, p. 19, 2019, doi: 10.36055/jip.v8i1.5439.
[4] M. A. Scibioh and B. Viswanathan, Supercapacitor: an introduction, Mater. Supercapacitor Appl., pp. 1–13, 2020, doi: 10.1016/b978-0-12-819858-2.00001-9.
[5] T. Kongthong et al., Microwave-assisted synthesis of nitrogen-doped pineapple leaf fiber-derived activated carbon with manganese dioxide nanofibers for high-performance coin- and pouch-cell supercapacitors, J. Sci. Adv. Mater. Devices, vol. 7, no. 2, p. 100434, 2022, doi: 10.1016/j.jsamd.2022.100434.
[6] G. F. S. Z. Mandey, W. Bodhi, and G. Citraningtyas, Pengaruh Infusa Daun Kepayang (Pangium edule Reinw.) terhadap Penurunan Kadar Kolesterol Darah Tikus Putih Jantan Galur Wistar (Rattus norvegicus), Pharmacon, vol. 3, no. 2, pp. 51–56, 2014.
[7] E. Taer, N. Y. Effendi, R. Taslim, et al., Interconnected micro-mesoporous carbon nanofiber derived from lemongrass for high symmetric supercapacitor performance, J. Mater. Res. Technol., vol. 19, pp. 4721–4732, 2022, doi: 10.1016/j.jmrt.2022.06.167.
[8] Y. Mao et al., Economic designing of high-performance flexible supercapacitor based on cotton leaf derived porous carbon and natural ocean water, J. Energy Storage, vol. 40, no. June, p. 102784, 2021, doi: 10.1016/j.est.2021.102784.
[9] M. Jayachandran, et al., Activated carbon derived from bamboo-leaf with effect of various aqueous electrolytes as electrode material for supercapacitor applications, Mater. Lett., vol. 301, no. June, p. 130335, 2021, doi: 10.1016/j.matlet.2021.130335.
[10] F. Rahmi, M. Muldarisnur, and Y. Yetri, Variasi Konsentrasi Elektrolit H2SO4 untuk Pembuatan Karbon Aktif Kulit Buah Kakao sebagai Elektroda Superkapasitor dengan Aktivator ZnCl2, J. Fis. Unand, vol. 10, no. 4, pp. 467–472, 2021, doi: 10.25077/jfu.10.4.467-472.2021.
[11] N. Kurniawati and T. Surawan, Superkapasitor Dari Karbon Aktif Limbah Daun Teh Sebagai Bahan Elektroda, J. Teknol., vol. 8, no. 1, pp. 76–83, 2020, doi: 10.31479/jtek.v8i1.64.
[12] H. Kristianto, “Review: Sintesis Karbon Aktif Dengan Menggunakan Aktivasi Kimia ZnCL2,” J. Integr. Proses, vol. 6, no. 3, pp. 104–111, 2017, doi: 10.36055/jip.v6i3.1031.
[13] E. Taer, Sukmawati, A. Apriwandi, and R. Taslim, “3D meso-macroporous carbon derived spruce leaf biomass for excellent electrochemical symmetrical supercapacitor,” Mater. Today Proc., vol. 87, pp. 32–40, 2023, doi: 10.1016/j.matpr.2023.01.371.
[14] E. Taer, N. Yanti, A. Apriwandi, A. Ismardi, and R. Taslim, “Novel O, P, S self-doped with 3D hierarchy porous carbon from aromatic agricultural waste via H3PO4 activation for supercapacitor electrodes,” Diam. Relat. Mater., vol. 140, no. PA, p. 110415, 2023, doi: 10.1016/j.diamond.2023.110415.
[15] B. Nath, G. Chen, L. Bowtell, and E. Graham, “ bxmAn investigation of thermal decomposition behavior and combustion parameter of pellets from wheat straw and additive blends by thermogravimetric analysis,” Int. J. Thermofluids, vol. 22, no. April, p. 100660, 2024, doi: 10.1016/j.ijft.2024.100660.
[16] R. Elina, D. Cintya Rori, and M. Khair, “Karakterisasi FTIR pada Karbon Aktif Terimpregnasi ZnO,” J. Pendidik. Tambusai, vol. 7, no. 3, pp. 23827–23831, 2023.
[17] R. Farma, R. I. Julita, I. Apriyani, A. Awitdrus, and E. Taer, “ZnCl2-assisted synthesis of coffee bean bagasse-based activated carbon as a stable material for high-performance supercapacitors,” Mater. Today Proc., vol. 87, pp. 25–31, 2023, doi: 10.1016/j.matpr.2023.01.370.
[18] F. P. Perdani, C. A. Riyanto, and Y. Martono, “Karakterisasi Karbon Aktif Kulit Singkong (Manihot esculenta Crantz) Berdasarkan Variasi Konsentrasi H3PO4 dan Lama Waktu Aktivasi,” IJCA (Indonesian J. Chem. Anal., vol. 4, no. 2, pp. 72–81, 2021, doi: 10.20885/ijca.vol4.iss2.art4.
[19] X. Xing et al., “Mechanisms of polystyrene nanoplastics adsorption onto activated carbon modified by ZnCl2,” Sci. Total Environ., vol. 876, no. March, p. 162763, 2023, doi: 10.1016/j.scitotenv.2023.162763.
[20] R. Yunus, E. Mikrianto, H. Abdurrahman, and A. K. Jaya, “Karakteristik Arang Aktif Eceng Gondok (Eichornia Crassipes) dengan Aktivator H3PO4, ZnCl2, dan KOH,” Pros. Semin. Nas. Lingkung. Lahan Basah, vol. 6, no. April, 2021.
[21] E. Taer et al., “The synthesis of activated carbon made from banana stem fibers as the supercapacitor electrodes,” Mater. Today Proc., vol. 44, pp. 3346–3349, 2020, doi: 10.1016/j.matpr.2020.11.645.
[22] Y. He et al., “Carbothermal reduction between MOF-derived carbon and spent battery powder for metal recovery: Thermogravimetric behavior and kinetic analysis,” Colloids Surfaces A Physicochem. Eng. Asp., vol. 694, no. April, p. 134152, 2024, doi: 10.1016/j.colsurfa.2024.134152.
[23] R. M. Obodo et al., “Exploring dual synergistic effects of CeO2@ZnO mediated sarcophrynium brachystachys leaf extract nanoparticles for supercapacitor electrodes applications,” Hybrid Adv., vol. 5, no. January, p. 100143, 2024, doi: 10.1016/j.hybadv.2024.100143.
[24] D. Marina and W. B. Kurniawan, “Karakteristik Karbon Aktif Limbah Kulit Lada (Piper Nigrum L) sebagai Elektroda Superkapasitor,” J. Ris. Fis. Indones., vol. 2, no. 1, pp. 7–14, 2021, doi: 10.33019/jrfi.v2i1.3171.
[25] Mutia Reza, “Charakterization of Activated Carbon From Banana,” J. Tek. Kim., vol. 16, no. 2, pp. 53–60, 2022.
[26] E. Taer, A. Apriwandi, H. Rusdi, A. Ismardi, and R. Taslim, “Improving volumetric supercapacitors performance with additive-free solid cylinder design of O, Zn, and Cl multi-doped biomass-based carbon source,” Bioresour. Technol. Reports, vol. 24, no. August, p. 101631, 2023, doi: 10.1016/j.biteb.2023.101631.
Published
2024-08-29
How to Cite
SYAHRUL, Syahrul; ARMYNAH, Bidayatul; TAER, Erman. Effect of Carbonization Temperature on the Physical and Electrochemical Properties of Carbon Electrodes from Kepayang Leaves (Pangium Edule Reinw) as Supercapacitor Cells. BULETIN FISIKA, [S.l.], v. 25, n. 2, p. 220 – 228, aug. 2024. ISSN 2580-9733. Available at: <https://ojs.unud.ac.id/index.php/buletinfisika/article/view/117774>. Date accessed: 06 jan. 2025. doi: https://doi.org/10.24843/BF.2024.v25.i02.p10.