Optical Characterization of Ferric-Doped ZnO Thin Film Deposited By Chemical Bath Deposition Method

  • Mohammad Shahjahan Assistant Professor, Department of Physics, University of Chittagong. Bangladesh
  • Aktarunnahar Eseta Department of Physics, University of Chittagong, Chittagong-4331, Bangladesh
  • Mohammad Asadul Haque Department of Physics, University of Chittagong, Chittagong-4331, Bangladesh

Abstract

Fe-doped ZnO holds numerous potential uses in devices such as UV light emitters, piezoelectric transducers, transparent electronics in solar cells, and bright windows as an II-VI semiconductor material. This study looked into the band gap, surface characteristics, optical transmittance, and absorbance of ZnO thin films with Fe doping in different pH conditions such as 8, 9, and 10. The films were prepared using the chemical bath deposition (CBD) method at 350 °C on a glass substrate. The samples were characterized using UV-visible spectroscopy and scanning electron microscopy (SEM). The SEM images of the undoped samples exhibited a lack of cracks, but the doped samples displayed visible cracks due to the presence of Fe in the films. ZnO thin-film surface shape is altered by pH and Fe doping variations. There is a tendency for the films' visual transmission to decrease when the pH rises. The absorbance for all samples increases in the UV and declines in the visible. Fe doping causes the optical band gap Eg to drop. The band gap of both doped and undoped samples reduces when pH rises.

Downloads

Download data is not yet available.

References

[1] E. Acosta, “Thin Films/Properties and Applications,” in Thin Films, IntechOpen, 2021. doi: 10.5772/intechopen.95527.
[2] M. W. Cole, W. D. Nothwang, and G. P. Carman, “Advanced Active Thin Films for the Next Generation of Meso-Micro Scale Army Applications,” Ferroelectrics, vol. 342, no. 1, pp. v–ix, Oct. 2006, doi: 10.1080/00150190600946047.
[3] L. Britnell et al., “Strong Light-Matter Interactions in Heterostructures of Atomically Thin Films,” Science (80-. )., vol. 340, no. 6138, pp. 1311–1314, Jun. 2013, doi: 10.1126/science.1235547.
[4] Y. Diao, L. Shaw, Z. Bao, and S. C. B. Mannsfeld, “Morphology control strategies for solution-processed organic semiconductor thin films,” Energy Environ. Sci., vol. 7, no. 7, pp. 2145–2159, 2014, doi: 10.1039/C4EE00688G.
[5] A. Richardella, A. Kandala, J. S. Lee, and N. Samarth, “Characterizing the structure of topological insulator thin films,” APL Mater., vol. 3, no. 8, Aug. 2015, doi: 10.1063/1.4926455.
[6] L. Punga et al., “Studies of the Structure and Optical Properties of BaSrMgWO6 Thin Films Deposited by a Spin-Coating Method,” Nanomaterials, vol. 12, no. 16, p. 2756, Aug. 2022, doi: 10.3390/nano12162756.
[7] G. Eda and M. Chhowalla, “Graphene-based Composite Thin Films for Electronics,” Nano Lett., vol. 9, no. 2, pp. 814–818, Feb. 2009, doi: 10.1021/nl8035367.
[8] D. E. Aspnes, “Optical properties of thin films,” Thin Solid Films, vol. 89, no. 3, pp. 249–262, Mar. 1982, doi: 10.1016/0040-6090(82)90590-9.
[9] C. M. Lew, R. Cai, and Y. Yan, “Zeolite Thin Films: From Computer Chips to Space Stations,” Acc. Chem. Res., vol. 43, no. 2, pp. 210–219, Feb. 2010, doi: 10.1021/ar900146w.
[10] A. Raidou et al., “Characterization of ZnO Thin Films Grown by SILAR Method,” OALib, vol. 01, no. 03, pp. 1–9, 2014, doi: 10.4236/oalib.1100588.
[11] J. Gutowski, N. Presser, and I. Broser, “Acceptor-exciton complexes in ZnO: A comprehensive analysis of their electronic states by high-resolution magnetooptics and excitation spectroscopy,” Phys. Rev. B, vol. 38, no. 14, pp. 9746–9758, Nov. 1988, doi: 10.1103/PhysRevB.38.9746.
[12] Y. Z. Peng, T. Liew, W. D. Song, C. W. An, K. L. Teo, and T. C. Chong, “Structural and Optical Properties of Co-Doped ZnO Thin Films,” J. Supercond., vol. 18, no. 1, pp. 97–103, Feb. 2005, doi: 10.1007/s10948-005-2158-4.
[13] S. J. Pearton et al., “Advances in wide bandgap materials for semiconductor spintronics,” Mater. Sci. Eng. R Reports, vol. 40, no. 4, pp. 137–168, Feb. 2003, doi: 10.1016/S0927-796X(02)00136-5.
[14] Y. Y. Villanueva, D.-R. Liu, and P. T. Cheng, “Pulsed laser deposition of zinc oxide,” Thin Solid Films, vol. 501, no. 1–2, pp. 366–369, Apr. 2006, doi: 10.1016/j.tsf.2005.07.152.
[15] M. Opel, S. Geprägs, M. Althammer, T. Brenninger, and R. Gross, “Laser molecular beam epitaxy of ZnO thin films and heterostructures,” J. Phys. D. Appl. Phys., vol. 47, no. 3, p. 034002, Jan. 2014, doi: 10.1088/0022-3727/47/3/034002.
[16] P. B. Taunk, R. Das, D. P. Bisen, R. K. Tamrakar, and N. Rathor, “Synthesis and optical properties of chemical bath deposited ZnO thin film,” Karbala Int. J. Mod. Sci., vol. 1, no. 3, pp. 159–165, Nov. 2015, doi: 10.1016/j.kijoms.2015.11.002.
[17] G. Shanmuganathan and I. B. S. Banu, “Influence of Codoping on the Optical Properties of ZnO Thin Films Synthesized on Glass Substrate by Chemical Bath Deposition Method,” Adv. Condens. Matter Phys., vol. 2014, pp. 1–9, 2014, doi: 10.1155/2014/761960.
[18] F. U. Hamelmann, “Thin film zinc oxide deposited by CVD and PVD,” J. Phys. Conf. Ser., vol. 764, p. 012001, Oct. 2016, doi: 10.1088/1742-6596/764/1/012001.
[19] O. Fouad, A. Ismail, Z. zaki, R. Mohamed, “Zinc oxide thin films prepared by thermal evaporation deposition and its photocatalytic activity,” Appl. Catal. B Environ., vol. 62, no. 1–2, pp. 144–149, Jan. 2006, doi: 10.1016/j.apcatb.2005.07.006.
[20] K. Lefatshe, C. M. Muiva, and L. P. Kebaabetswe, “Extraction of nanocellulose and in-situ casting of ZnO/cellulose nanocomposite with enhanced photocatalytic and antibacterial activity,” Carbohydr. Polym., vol. 164, pp. 301–308, May 2017, doi: 10.1016/j.carbpol.2017.02.020.
[21] M. Ohmukai, T. Nakagawa, and A. Matsumoto, “ZnO Films Deposited on Glass by Means of DC Sputtering,” J. Mater. Sci. Chem. Eng., vol. 04, no. 10, pp. 1–7, 2016, doi: 10.4236/msce.2016.410001.
[22] S. M. Pawar, B. S. Pawar, J. H. Kim, O.-S. Joo, and C. D. Lokhande, “Recent status of chemical bath deposited metal chalcogenide and metal oxide thin films,” Curr. Appl. Phys., vol. 11, no. 2, pp. 117–161, Mar. 2011, doi: 10.1016/j.cap.2010.07.007.
[23] T. Srinivasulu, K. Saritha, and K. T. R. Reddy, “Physical Properties of Spray Deposited Fe:ZnOThin Films,” Mater. Today Proc., vol. 4, no. 14, pp. 12571–12576, 2017, doi: 10.1016/j.matpr.2017.10.063.
[24] T. Minami, H. Sato, H. Nanto, and S. Takata, “Group III Impurity Doped Zinc Oxide Thin Films Prepared by RF Magnetron Sputtering,” Jpn. J. Appl. Phys., vol. 24, no. 10A, p. L781, Oct. 1985, doi: 10.1143/JJAP.24.L781.
[25] J. C. Kim and E. Goo, “Morphology and formation mechanism of the pyrochlore phase in ZnO varistor materials,” J. Mater. Sci., vol. 24, no. 1, pp. 76–82, Jan. 1989, doi: 10.1007/BF00660935.
[26] S. Bethke, H. Pan, and B. W. Wessels, “Luminescence of heteroepitaxial zinc oxide,” Appl. Phys. Lett., vol. 52, no. 2, pp. 138–140, Jan. 1988, doi: 10.1063/1.99030.
[27] G. Demircan et al., “The effect of Co and Mn Co-Doping on structural and optical properties of ZnO thin films,” Opt. Mater. (Amst)., vol. 126, p. 112163, Apr. 2022, doi: 10.1016/j.optmat.2022.112163.
[28] C. M. Firdaus, M. S. B. S. Rizam, M. Rusop, and S. R. Hidayah, “Characterization of ZnO and ZnO: TiO2 Thin Films Prepared by Sol-Gel Spray-Spin Coating Technique,” Procedia Eng., vol. 41, pp. 1367–1373, 2012, doi: 10.1016/j.proeng.2012.07.323.
[29] B. P. Kafle, S. Acharya, S. Thapa, and S. Poudel, “Structural and optical properties of Fe-doped ZnO transparent thin films,” Ceram. Int., vol. 42, no. 1, pp. 1133–1139, Jan. 2016, doi: 10.1016/j.ceramint.2015.09.042.
[30] R. Saleh, S. P. Prakoso, and A. Fishli, “The influence of Fe doping on the structural, magnetic and optical properties of nanocrystalline ZnO particles,” J. Magn. Magn. Mater., vol. 324, no. 5, pp. 665–670, Mar. 2012, doi: 10.1016/J.JMMM.2011.07.059.
[31] J. Shi, J. Zhang, L. Yang, M. Qu, D. Qi, and K. H. L. Zhang, “Wide Bandgap Oxide Semiconductors: from Materials Physics to Optoelectronic Devices,” Adv. Mater., vol. 33, no. 50, Dec. 2021, doi: 10.1002/adma.202006230.
[32] D. Akcan, “Determination of optical constants and band gap variation of Zn0.98-xCu0.02MgxO thin films,” Front. Life Sci. Relat. Technol., vol. 3, no. 3, pp. 101–106, Dec. 2022, doi: 10.51753/flsrt.1120679.
[33] E. Burstein, “Anomalous Optical Absorption Limit in InSb,” Phys. Rev., vol. 93, no. 3, pp. 632–633, Feb. 1954, doi: 10.1103/PhysRev.93.632.
[34] L. S. Wang et al., “Preparation and characterization of the ZnO:Al/Fe65Co35/ZnO:Al multifunctional films,” Appl. Phys. A, vol. 106, no. 3, pp. 717–723, Mar. 2012, doi: 10.1007/s00339-011-6679-3.
Published
2024-02-28
How to Cite
SHAHJAHAN, Mohammad; ESETA, Aktarunnahar; HAQUE, Mohammad Asadul. Optical Characterization of Ferric-Doped ZnO Thin Film Deposited By Chemical Bath Deposition Method. BULETIN FISIKA, [S.l.], v. 25, n. 1, p. 115 – 123, feb. 2024. ISSN 2580-9733. Available at: <https://ojs.unud.ac.id/index.php/buletinfisika/article/view/105883>. Date accessed: 24 nov. 2024. doi: https://doi.org/10.24843/BF.2024.V25.i01.p15.