Study on the Relationship between Hotspots and Air Pollution Standard Index Based on Carbon Monoxide Concentration in West Kalimantan
Abstract
Hotspots, indicating active fires and potential sources of air pollution, are a major concern due to their impact on air quality in West Kalimantan. In this study, an analysis was carried out regarding the relationship of hotspots to the Air Pollution Standard Index (ISPU) based on the carbon monoxide (CO) parameter. This study aimed to determine the relationship between forest fires and air pollution levels. The data used in this study is in the form of monthly average CO concentration data and coordinates of hotspots in 2017-2021. To determine the effect of CO concentration, CO concentration was converted into ISPU and then mapped using the Inverse Distance Weighting (IDW) interpolation method. In addition, the overlay technique is also applied to the map and the correlation coefficient calculation between ISPU data and hotspot data. The study results show that the annual average number of hotspots ranges from 769 to 3,612, while the average ISPU ranges from 22.21 to 59.03. The highest average number of hotspots occurred in 2019, with 3,612 hotspots and the highest average ISPU value of 59.03, categorized as moderate. However, when examined monthly, the highest average number of hotspots is observed in August and September, with 8,505 and 8,321 hotspots, respectively, and average ISPU values of 55.36 and 88.32, categorized as moderate. Furthermore, the correlation coefficient between the average number of hotspots and the average ISPU per month is 0.91, and per year is 0.98, indicating a very high relationship. Spatially, clustered hotspot locations correspond to higher ISPU values. This implies that as the number of hotspots increases, the ISPU value based on CO concentration increases.
Downloads
References
[2] S. Ritung et al., Peta Lahan Gambut Indonesia Skala 1:250.000. Balai Besar Litbang Sumberdaya Lahan Pertanian. Bogor, 2011.
[3] Sipongi, Luas Kebakaran Hutan, Kementerian Lingkungan Hidup dan Kehutanan, 2022. Available from: https://sipongi.menlhk.go.id/. [Cited 2022 September 5].
[4] A. Yusuf, H. Hapsoh, S. H. Siregar, and D. R. Nurrochmat, Analisis Kebakaran Hutan dan Lahan di Provinsi Riau, Dinamika Lingkungan Indonesia, vol. 6, no. 2, 2019, pp. 67-84.
[5] C. N. Berlinck and E. K. L. Batista, Good Fire, Bad fire: It Depends on Who Burns, Flora: Morphology Distribution Functional Ecology Plants, vol. 268, 2020, pp. 1-4.
[6] I. B. Pandapotan, K. N. Suarbawa, and I. G. A. Widagda, Analisis Pola Sebaran Asap Terhadap Kondisi Meteorologi di Pulau Kalimantan Terkait Kebakaran Hutan dan Lahan: Studi Kasus Kebakaran Hutan pada Bulan September 2019, Buletin Fisika, vol. 23, no. 1, 2022, pp. 19–25.
[7] R. Septianingrum, Dampak Kebakaran Hutan di Indonesia Tahun 2015 dalam Kehidupan Masyarakat, Agric Ecosys Environ, vol. 1, no. 82, 2018, pp. 129–137.
[8] D. Arisanty et al., Kebakaran Lahan Gambut. Universitas Lambung Mangkurat. Banjarmasin, 2020.
[9] J. J. Rose et al., Carbon Monoxide Poisoning: Pathogenesis, Management, and Future Directions of Therapy, American Journal Respiratory and Critical Care Medicine, vol. 195, no. 5, 2017, pp. 596–606.
[10] W. O. Yuslinda, Yasnani, and R. T. Ardiansyah, Hubungan Kondisi Lingkungan dalam Rumah dengan Kejadian Penyakit Infeksi Saluran Pernapasan Akut (ISPA) pada Masyarakat di Kelurahan Ranomeeto Kecamatan Ranomeeto Tahun 2017. JIMKESMAS, vol. 2, no. 7, 2017, pp. 1–10.
[11] Y. Zhao et al., Ambient Carbon Monoxide and Increased Risk of Daily Hospital Outpatient Visits for Respiratory Diseases in Dongguan, China, Science of Total Environment, vol. 668, 2019, pp. 254–260.
[12] F. Rozi, A. A. Akbar, and U. Kadaria, Hubungan Sebaran Titik Panas (Hotspot) terhadap Kesehatan Masyarakat Kota Pontianak, Jurnal Teknik Sipil, vol. 20, no. 2, 2020, pp. 1-14.
[13] B. H. Saharjo and D. Ramadhania, Hubungan antara Hotspot dan Kebakaran Terhadap Timbulnya Penyakit Infeksi Saluran Pernapasan Akut (ISPA) di Kabupaten Kubu Raya, Kalimantan Barat, Jurnal Silvikultur Tropika, vol. 10, no. 3, 2019, pp. 133–139.
[14] Peraturan Pemerintah RI, Peraturan Menteri Lingkungan Hidup dan Kehutanan Republik Indonesia No 14 Tahun 2020 tentang Indeks Standar Pencemaran Udara, 2020.
[15] Zahtamal, R. Restila, and E. Nazriati, Korelasi Sebaran Titik Panas dengan Kualitas Udara di Kota Pekanbaru, Prepotif Jurnal Kesehatan Masyarakat, vol. 7, no. 1, 2023, pp. 283-291.
[16] N. Novianti, Nurhasanah, and A. Riza, Korelasi Konsentrasi Particulate Matter (PM 10) dan Curah Hujan di Kalimantan Barat, Prisma Fisika, vol. 10, no. 2, 2022, pp. 168–171.
[17] T. F. Dicelebica, A. A. Akbar, and D. R. Jati, Identifikasi dan Pencegahan Daerah Rawan Bencana Kebakaran Hutan dan Lahan Gambut di Kalimantan Barat, Jurnal Ilmu Lingkungan, vol. 20, no. 1, 2022, pp. 115–126.
[18] J. Null, El Niño and La Niña Years and Intensities, Golden Gate Weather Service, 2022. Available from: https://ggweather.com/enso/oni.htm. [Cited 2023 January 24].
[19] BMKG, Prakiraan Musim Kemarau Tahun 2020 Provinsi Kalimantan Barat. BMKG Kalimantan Barat. Mempawah, 2020.
[20] I. Purnamasari, T. Wahyu Saputra, and S. Ristiyana, Pola Spasial Kekeringan di Jawa Barat Pada Kondisi El Nino Berbasis Metode Palmer Drought Severity Index (PDSI), Jurnal Teknik Pengairan, vol. 12, no. 1, 2021, pp. 16–29.
[21] M. Fitriyawita et al., Hubungan Pola Garis Arus Angin (Streamline) dengan Distribusi Hujan di Kalimantan Barat, Prisma Fisika, vol. 8, no. 2, 2020, pp. 135-146.