Expert System for Early Diagnosis of Heart Disease Using the Random Forest Method
Abstract
In Indonesia, coronary heart disease continues to grow. However, the efforts to prevention it can still be done by diagnosing the initial symptoms caused by using an expert system. This study was designed to build an expert system application to diagnose early coronary disease by random forest methods. The application interface was built using the PHP programming language using framework bootstrap, and uses the python programming language to build a random forest. To make an early diagnosis of coronary heart disease, a decision tree was built by training data from the UCI Dataset Machine Learning Repository using the random forest method. Followed by patient classification data that has been collected through 13 questions to get the diagnosis. The diagnosis results were normal, stadium 1, stadium 2, stadium 3 and stadium 4. Based on the tests that had been carried out, the application was able to provide results in accordance with the sample data collected using a confusion matrix resulting in an accuracy of 92.25% +/- 0.62 with 70% precision, remember 46%, which obtained a score of f0,5 72%.
Downloads
References
[2] Santoso, L. W., Noertjahyana, A., & Leonard, I. (2013). Aplkasi Sistem Pakar Berbasis Web Untuk Mendiagnosa Awal Penyakit Jantung . Program Studi Teknik Informatika, 1.
[3] Tampubolon, G. S. (2017, 05 11). Infark Miokard Akut. Retrieved From Alomediaka Khusus Untuk Dokter: https://www.alomedika.com/penyakit/kardiologi/infark-miokardakut/epidemiologi.
[4] Hermawanti, L., & Rabiha, S. G. (2014). Penggabungan Algoritma Backward Elimination Dan K-Nearest Neighbor Untuk Mendiagnosis Penyakit Jantung. Teknik Informatika,, 1.
[5] Safriandono, A. N. (2017). Algoritma K-Nearest Neighbor Berbasis Forward Selection Untuk Mendiagnosis Penyakit Jantung Koroner. Komputaki, 1
[6] Prasetio, R. T., & Pratiwi. (2015). Penerapan Teknik Bagging Pada Algoritma Klasifikasi Untuk Mengatasi Ketidakseimbangan Kelas Dataset Medis. Informatika, 395.
[7] Lingga P, R. D., Fatichah, C., & Purwitasari , D. (2017). Deteksi Gempa Berdasarkan Data Twitter Menggunakan Decision Tree, Random Forest dan SVM. Teknik Informatika, A-159.
[8] Margasari, A. (2013). Penerapan Metode Cart (Classification And Regression Trees) Dan Analisa Regresi Logistik Biner Pada Klasifikasi Profil Mahasiswa Fmipa Universitas Brawijaya. Jurusan Matematika F.Mipa, 257 [11] Anonim. 2018. DI- Waterproof Temperature Sensor. http://www.mikron123.com. Diakses tanggal 14 april 2018
[9] yhat. (2013, juni 5). random forest. Retrieved from http://blog.yhat.com: http://blog.yhat.com/posts/random-forests-inpython. html.
[10] Hendrawati, T., & Khrisne, D. C. ASALTAG: Automatic Image Annotation Through Salient Object Detection and Improved k- Nearest Neighbor Feature Matching. Journal of Electrical, Electronics and Informatics, 2(1), 6-10.
[11] Khrisne, D. C., & Yusanto, M. D. (2015). Content-Based Image Retrieval Menggunakan Metode Block Truncation Algorithm dan Grid Partitioning. S@ CIES, 5(2), 79-85.
[12] Stephanie. (2016, Agustus 27). Receiver Operating Characteristic (ROC) Curve: Definition, Example. Retrieved from Receiver Operating Characteristic (ROC) Curve: http://www.statisticshowto.com/receiver-operating-characteristicroc-curve/.
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.