Automatic Text Summarization Menggunakan Metode Graph dan Metode Ant Colony Optimization
Abstract
Many documents were distributed on the Internet every day. Not all of the text in a document is important information. To seek information from documents that are widely used methods Information Retreival (IR). Research in the field of Information Retreival (IR) has been made since the 1950s. Document retrieval system is a system that can search for documents by keyword, but the retrieval of the document will encounter problems if they have to seek specific information from the document a polynomial with the number of constituent documents of text that amount is not small. Automatic Text Summarization combines two methods of graph method and the method of ant colony optimization and use features four sentences. Four features the phrase used, namely: the similarity between sentences, sentences that resembles the title of the document TF-ISF and TF-IDF. Tests performed include: testing the summary results of the system with the summary results of the manual to get the 76.3%, the test results summary system with the summary results Autosummary tools in Microsoft Word to get the 68.15% and the test results summary system with the summary results of the expert that high school teacher, getting the 78.43 %. Results compression rate to get the system summary 78.2%.
Downloads
References
[2] Christopher D. Manning, dkk. 2009. An Introduction to Information Retrieval. Cambridge University Press. Cambrindge. England
[3] Fatkhul. A dan Purwatiningtyas. 2015. Rancang Bangun Information retrieval System (IRS) Bahasa Jawa Ngoko pada Palintangan Penjebar Semangad dengan Metode Vector Space Model (VSM). Jurnal Teknologi Informasi DINAMIK. Vol. 20, No. 1.pp 25-35.
[4] Aristoteles. 2013. Penerapan Algoritma Genetika pada Peringkasan Teks Dokumen Bahasa Indonesia. Prosiding Samirata FMIPA Unila, pp. 29-33.
[5] Riandayani. 2014. Peringkas Teks Otomatis Menggunakan Metode Fuzzy Logic dan Fuzzy C-Mean (FCM) pada Dokumen Berbahasa Indonesia. JATIT, Vol. 59, No. 3, pp 718-724.
[6] Pradnyana dan Mogi. 2014. Implementasi Automated Text Summarization Untuk Dokumen Tunggal Berbahasa Indonesia Dengan Menggunakan Graph-Based Summarization Algorithm Dan Algoritma Genetika. Jurnal Ilmiah NERO , Vol. 1 No. 2, pp. 33-46
[7] Khrisne, D. C., Rosalin, D. 2014. Peningkatan Penilaian Sentimen pada Komentar Angket Dosen dengan Menggunakan Metode K-Means dan K-Nearest Neighbor Studi Kasus STMIK STIKOM Indonesia. STIKI Applied Science (S@cies), Vol. 4 (2), pp. 57-61.
[8] Zaman dan Winarko. 2011. Analisis Fitur Kalimat untuk Peringkas Teks Otomatis pada Bahasa Indonesia. IJCCS, Vol. 5 No. 2, pp. 60-68.
[9] Samuel Wibisono. 2008. "Matematika Diskrit Edisi 2". Graha Ilmu. Yogyakarta
[10] Marco Dorigo and Thomas Stutzle. 2004. Ant Colony Optimization, A Bradford book. The MIT Press Cambridge, Massachusetts London, England
[11] G. A. Pradnyana dan N. A. Sanjaya, 2012. “Cosine Similarity”, Perancangan Dan Implementasi Automated Document Integration Dengan Menggunakan Algoritma Complete Linkage Agglomerative Hierarchical Clustering, vol. 5, (2), pp. 1-10.
[12] Robertson, Stephen, Understanding Inverse Document Frequency: On theoretical arguments for IDF, Journal of Documentation, Vol. 60, pp. 502–520
[13] Xia T, Chai Y. 2011. An improvement to TF-IDF: term distribution based term weight algorithm. Journal of Software. 6 (3): 413-420
[14] Mustaqhfiri, Muchammad. 2011. Peringkasan Teks Otomatis Berita Berbahasa Indonesia Menggunakan Metode Maximum Marginal Relevan. Skripsi. Jurusan Teknik Informatika. Fakultas Sains danTeknologi Universitas Islam Negeri Maulana Malik Ibrahim. Malang.
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
This work is licensed under a Creative Commons Attribution 4.0 International License