KADAR TNF ALPHA VITREUS YANG TINGGI MENINGKATKAN RISIKO PDR PADA PASIEN DM TIPE 2
Main Article Content
Abstract
Abstract—DM tipe 2 merupakan penyakit mikrovaskular yang dapat menyebabkan komplikasi pada berbagai organ. Komplikasi DM di mata dapat berupa glaukoma, katarak diabetik, perdarahan vitreus dan retinopati diabetik. Proliperatif Diabetic Retinopathy (PDR) merupakan kerusakan mikrovaskular pada pembuluh darah retina tahap lanjut dan dapat menyebabkan gangguan penglihatan dan kebutaan. Prevalensi PDR sebesar 2% pada pasien DM tipe 2. Patogenesis PDR sampai saat ini belum terlalu jelas. Salah satu faktor penyebab PDR adalah faktor inflamasi, selain angiogenesis dan apoptosis. Salah satu penanda inflamasi pada PDR adalah Tumor Necrosis Factor (TNF) Alpha. TNF Alpha dapat menyebabkan kerusakan endotel, merusak blood retina barrier sehingga menyebabkan perdarahan retina dan vitreus. Penelitian ini bertujuan untuk mengetahui bahwa kadar TNF Alpha yang tinggi sebagai faktor risiko PDR pada pasien DM tipe 2. Penelitian ini adalah penelitian case control . Total 38 subyek pada penelitian ini, dimana kelompok kasus adalah pasien DM tipe 2 dengan PDR yang menjalani vitrektomi, dan kontrol adalah pasien tanpa DM tipe 2 yang menjalani vitrektomi sesuai indikasi medis. Bahan penelitian ini adalah vitreus dengan pemeriksaan kadar TNF-? dengan menggunakan teknik Enzyme Linked Immunosorbent Assay (ELISA). Cut off point untuk TNF-? adalah 15,795 pg/ml. OR TNF-? adalah 5,13; IK 95%: 2,88-6,95; p= 0,001 (<0,05). Penelitian ini membuktikan bahwa kadar TNF-? tinggi sebagai faktor risiko PDR pada DM tipe-2. Temuan ini memperkuat teori patogenesis terjadinya PDR yaitu melalui jalur inflamasi TNF-? pada DM tipe 2.
Kata kunci: TNF-Alpha, Virektomi, Proliferative Diabetic Retinopathy, Vitreus, ELISA
Article Details
References
American Diabetes Association. 2020. Classification and diagnosis of diabetes: Standards of Medical Care in Diabetes. Diabetes care, S14-S31.
Budijanto, D., Kurniawan R., Kurniasih, N. 2018. InfoDatin : Hari Diabetes Sedunia tahun 2018. Kementrian Kesehatan RI Pusat Data dan Informasi, 1-8.
Van Dijk, H. W., Verbraak, F. D., Kok, P. H., Stehouwer, M., Garvin, M. K., Sonka, M., Abramoff, M. D. 2012. Early neurodegeneration in the retina of type 2 diabetic patients. Investigative ophthalmology & visual science, 53(6), 2715-2719.
Li, D., and Wang, Q. 2020. Correlation Analysis between Nerve Fiber Layer Thickness and Peripapillary Vessel Density and Influencing Factors of Peripapillary Vessel Density in Preclinical Diabetic Retinopathy. Journal of Ophthalmology. Vol.2020: p 1-8
Lim, H. B., Shin, Y. I., Lee, M. W., Lee, J. U., Lee, W. H., Kim, J. Y. 2020. Association of Myopia with Peripapillary Retinal Nerve Fiber Layer Thickness in Diabetic Patients Without Diabetic Retinopathy. Investigative Ophthalmology & Visual Science, 61(10), 30-30.
Lechner, J., O'Leary, O. E., & Stitt, A. W. 2017. The pathology associated with diabetic retinopathy. Vision research, 139, 7-14.
Nadri, G., Saxena, S., Stefanickova, J., Ziak, P., Benacka, J., Gilhotra, J. S., Kruzliak, P. 2019. Disorganization of retinal inner layers correlates with ellipsoid zone disruption and retinal nerve fiber layer thinning in diabetic retinopathy. Journal of Diabetes and its Complications, 33(8), 550-553.
Peng, P. H., Lin, H. S., Lin, S. 2009. Nerve fibre layer thinning in patients with preclinical retinopathy. Canadian Journal of Ophthalmology, 44(4), 417-422.
Sasongko, M. B., Widyaputri, F., Agni, A. N., Wardhana, F. S., Kotha, S., Gupta, P.,Wang, J. J. 2017. Prevalence of diabetic retinopathy and blindness in Indonesian adults with type 2 diabetes. American journal of ophthalmology, 181, 79-87.
Sohn, E. H., van Dijk, H. W., Jiao, C., Kok, P. H., Jeong, W., Demirkaya, N., Abràmoff, M. D. 2016. Retinal neurodegeneration may precede microvascular changes characteristic of diabetic retinopathy in diabetes mellitus. Proceedings of the National Academy of Sciences, 113(19), p2655-2664.
Waheed NK, Kashani, AH. Garciafilho CAA, Duker JS, Rosenhold PJ. 2018. Retinal Imaging and Diagnostics :Optical Coherence Tomography. In K. A. Waheed NK, Ryan’s Retina ;p 77–9, 102–6.
Wong, T. Y., Sun, J., Kawasaki, R., Ruamviboonsuk, P., Gupta, N., Lansingh, V. C., Taylor, H.
R. 2018. Guidelines on diabetic eye care: the international council of ophthalmology recommendations for screening, follow-up, referral, and treatment based on resource settings. Ophthalmology, 125(10), 1608-1622.
World Health Organization. 2018. Guidelines on Second and Third Line Medicines and Type of Insulin for the Control of Blood Glucose Levels in nonpregnant Adult with Diabetes Mellitus.
Xie, Y., Chu, A., Feng, Y., Chen, L., Shao, Y., Luo, Q., Deng, X., Wu, M., Shi, X., Chen,Y. 2018. MicroRNA-146a: A comprehensive indicator of inflammation and Oxidative Stress Status Induced in the Brain of Chronic T2DM Rats. Frontiers in Pharmacology, 9(478).
Xiong, F., Du, X., Hu, J., Li, T., Du, S., Wu, Q. 2014. Altered retinal microRNA expression profiles in early diabetic retinopathy: an in-silico analysis. Current Eye Research, 39(7):720-729.
Yan, H., dan Mao, C. 2014. Roles of elevated intravitreal IL-6and IL-10 levels in proliferative diabetic retinopathy. Indian Journal of Ophthalmology, 62(6): 699
Yang, W., Yu, X., Zhang, Q., Lu, Q., Wang, J., Cui, W., Zheng, Y., Wang, X., dan Luo, D. 2013. Attenuation of streptozotocin-induced diabetic retinopathy with low molecular weight fucoidan via inhibition of vascular endothelial growth factor. Exp Eye Res, 115:96-105.
Yang Yao a,b , Rong Lic , Junhui Dud . Tumor necrosis factor-α and diabetic retinopathy: Review and meta-analysis. Clinica Chimica Acta 485 (2018) 210–217.
Ye, P., Liu, J., He, F., Xu, W., dan Yao, K. 2014. Hypoxia-induced Deregulation of miR- 124-3p and its Regulative Effect on VEGF and MMP-9 Expression. International Journal of Medical Sciences, 11(1): 17-23.
Yuk JM, Shin DM, Lee HM, Kim JJ, Kim SW, Jin HS, et al. The orphan nuclear receptor SHP acts as a negative regulator in inflammatory signaling triggered by Toll-like receptors. Nat Immunol 2011; 12: 742–51
Yao, S.A., Bae, D.G., Ryoo, J.W. 2015. Arginine-rich anti vascular endothelial growth factor (anti-VEGF) hexapeptide inhibits collagen-induced arthritis and VEGF- stimulated productions of TNF-a and IL-6 by human monocytes. The Journal of Immunology, 174 (9): 5846-5855.
Zampetaki, A., Willeit, P., Burr, S., Yin, X., Langley, S.R., Kiechl, S., dan Mayr, M. 2016. Angiogenic microRNAs Linked to Incidence and Progression of Diabetic Retinopathy in type-1 Diabetes. Diabetes, 65(1): 216-227.
Zhang, J., Du, Y.Y., Lin, Y.F., Chen, Y.T., Yang, L., Wang, H.J. dan Ma, D. 2018. The cell growth suppressor, mir-124, targets IRS-1. Biochem Biophys Res Commun, 377: 136-140.
Zhang, W., Chen, S., dan Liu, M.L. 2018b. Pathogenic Roles of Microvesicles in Diabetic Retinopathy. Acta Pharmacologica Sinica, 39(1): 1-11.
Zhu Z, Yin J, Li DC, Mao ZQ. Role of microRNAs in the treatment of type 2 diabetes mellitus with Roux-en-Y gastric bypass. Brazilian Journal of Medical and Biological Research (2017) : 50(3):e5817.
Zou, H.L., Wang, Y., Gang, Q., Zhang, Y. dan Sun, Y. 2017. Plasma level of miR-93 is associated with higher risk to develop type 2 diabetic retinopathy. Graefe's Archive for Clinical and Experimental Ophthalmology, 255 (6): 1159-1166.