STUDI AKTIVITAS ANTIBAKTERI DARI EKSTRAK DAN METABOLIT SEKUNDER JAMUR ENDOFIT GENUS FUSARIUM

Main Article Content

Ni Komang Asri Widayanti I Putu Yogi Astara Putra Ni Putu Ariantari

Abstract

Senyawa bahan alam (natural products) merupakan senyawa kimia atau zat yang diproduksi dari organisme hidup, salah satunya berasal dari mikroorganisme. Diantara berbagai jenis mikroorganisme, jamur endofit merupakan salah satu organisme yang diteliti secara intensif dalam dua dekade terakhir. Jamur endofit adalah mikroorganisme yang hidup di dalam jaringan tanaman, seperti bunga, akar, daun, batang, hingga biji, dan tidak merugikan inangnya. Salah satu jamur endofit yang dikaji bioaktivitasnya berasal dari genus Fusarium. Fusarium merupakan salah satu genus jamur yang berfilamen dan banyak ditemukan pada tumbuhan. Jamur Fusarium dapat berinteraksi dengan tanaman inangnya dengan berbagai cara. Beberapa strain endofit Fusarium diketahui dapat mempengaruhi pertumbuhan tanaman, meningkatkan produktivitas, atau membantu tanaman bertahan dalam kondisi lingkungan yang buruk. Strain endofit Fusarium dilaporkan dapat menghasilkan senyawa bioaktif yang memiliki potensi farmasi atau bioteknologi, seperti senyawa dengan aktivitas antibakteri. Artikel ini mengkaji aktivitas antibakteri dari ekstrak dan metabolit sekunder yang dihasilkan jamur endofit dari genus Fusarium berdasarkan data publikasi ilmiah selama 10 tahun terakhir (2013-2023). Kajian ini disusun berdasarkan studi literatur dari jurnal nasional dan internasional menggunakan basis data Google Scholar dan Science Direct. Pencarian jurnal menggunakan kata kunci seperti “endophytic fungi from Fusarium”, “antibacterial of endophytic fungi from Fusarium”, dan “antimicrobial endophytic Fusarium”. Hasil kajian menunjukkan sebanyak 14 spesies jamur endofit dari genus Fusarium mampu menghasilkan metabolit yang memiliki aktivitas antibakteri. Bioaktivitas antibakteri yang dihasilkan dari metabolit sekunder jamur endofit genus Fusarium tersebut diuji dengan metode difusi dan mikrodilusi. Penggalian senyawa dari jamur endofit genus Fusarium potensial dilakukan dalam upaya penemuan molekul bioaktif antibakteri dari genus ini. 

Article Details

How to Cite
WIDAYANTI, Ni Komang Asri; PUTRA, I Putu Yogi Astara; ARIANTARI, Ni Putu. STUDI AKTIVITAS ANTIBAKTERI DARI EKSTRAK DAN METABOLIT SEKUNDER JAMUR ENDOFIT GENUS FUSARIUM. Prosiding Seminar Nasional Sains dan Teknologi (Senastek), [S.l.], v. 8, n. 1, p. 15-23, dec. 2023. Available at: <https://ojs.unud.ac.id/index.php/senastek/article/view/109143>. Date accessed: 28 jan. 2025.
Section
Articles

References

[1] Thiruchelvi P., Thaigarajan P., A. G., Azlinah M. S., Jiun Y. C., Manoj L., Chai F. C., Kumar S. (2022). Antimicrobial resistance: Prevalence, economic burden, mechanisms of resistance and strategies to overcome. doi: https://doi.org/10.1016/j.ejps.2021.106103
[2] Genilloud, O. (2019). Natural products discovery and potential for new antibiotics. Current Opinion in Microbiology, 51, 81–87. doi:10.1016/j.mib.2019.10.012
[3] Anamika, V., Nowsheen, S., Hanuman, S. J. (2022). Fungal Endophytes to Combat Biotic and Abiotic Stresses for Climate-Smart and Sustainable Agriculture. doi: 10.3389/fpls.2022.953836
[4] Jin, Z., Gao, L., Zhang, L., Liu, T., Yu, F., Zhang, Z., Wang, B. (2017). Antimicrobial activity of saponins produced by two novel endophytic fungi from Panax notoginseng. Natural Product Research, 31(22), 2700–2703. doi:10.1080/14786419.2017.1292265
[5] Ariantari, N. P., Frank, M., Gao, Y., Stuhldreier, F., Kiffe-Delf, A.-L., Hartmann, R., Proksch, P. (2021). Fusaristatins D–F and (7S,8R)-(−)-chlamydospordiol from Fusarium sp. BZCB-CA, an endophyte of Bothriospermum chinense. Tetrahedron, 85, 132065. doi:10.1016/j.tet.2021.132065
[6] Li, J., Xie, S., Ahmed, S., Wang, F., Gu, Y., Zhang, C., Chai, X., Wu, Y., Cai, J., and Cheng, G. (2017). Antimicrobial Activity and Resistance: Influencing Factors, Frontiers in Pharmacology, vol. 8, no. 6. doi:https://doi.org/10.3389/fpHr.2017.00364.
[7] Zuhura N Mwanga, Esther F Mvungi., Donatha D Tibuhwa. (2019). Antimicrobial Activities of Endophytic Fungi Secondary Metabolites from Moringa oleifera (Lam). Tanz. J. Sci. Vol 45(3), 2019
[8] Huan W., Ziyue L., Fangfang D., Yan C., Kaidi Q., Qin X., Huiting L., Jun Z., and Haibo Tan. (2023). Isolation, Identification, and Antibacterial Evaluation of Endophytic Fungi from Gannan navel orange. doi: 10.3389/fmicb.2023.1172629
[9] Dame, Z. T., Silima, B., Gryzenhout, M., & van Ree, T. (2015). Bioactive compounds from the endophytic fungusFusarium proliferatum. Natural Product Research, 30(11), 1301–1304. doi:10.1080/14786419.2015.1053089
[10] Praptiwi, P., Palupi, K. D., Fathoni, A., Wulansari, D., Ilyas, M., and Agusta, A. (2016). Evaluation of Antibacterial and Antioxidant Activity of Extracts of Endophytic Fungi Isolated from Indonesian Zingiberaceous Plants, Nusantara Bioscience, vol. 8, no. 2, pp. 306–311, doi : https://doi.org/10.1357/nusbiosci/n080228
[11] Genilloud, O. (2019). Natural products discovery and potential for new antibiotics. Current Opinion in Microbiology, 51, 81–87. doi:10.1016/j.mib.2019.10.012
[12] Grabka, R., D’entremont, T.W., Adams, S.J., Walker, A.K., Tanney, J.B., Abbasi, P.A., et al. (2022). Fungal Endophytes and Their Role in Agricultural Plant Protection against Pests and Pathogens, Plants, 11:1–29.
[13] Zaman, S., Al-Joufi, F. A., Zafar, M., and Zahoor, M. (2022). Phytochemical, Antimicrobial and Cytotoxic Activities of Gaultheria trichophyllaRoyle, Applied Sciences,vol. 12, no. 14, pp. 6921, doi: 10.3390/app12146921.
[14] Khan, N., Afroz, F., Begum, M. N., Roy Rony, S., Sharmin, S., Moni, F., Sohrab, M. H. (2018). Endophytic Fusarium solani: A rich source of cytotoxic and antimicrobial napthaquinone and aza-anthraquinone derivatives. Toxicology Reports, 5, 970–976. doi:10.1016/j.toxrep.2018.08.016
[15] Ibrahim, S. R. M., Mohamed, G. A., Al Haidari, R. A., Zayed, M. F., El-Kholy, A. A., Elkhayat, E. S., Ross, S. A. (2018). Fusarithioamide B, a new benzamide derivative from the endophytic fungus Fusarium chlamydosporium with potent cytotoxic and antimicrobial activities. Bioorganic & Medicinal Chemistry, 26(3), 786–790. doi:10.1016/j.bmc.2017.12.049
[16] Singh, A., Kumar, J., Sharma, V. K., Singh, D. K., Kumari, P., Nishad, J. H., Kharwar, R. N. (2021). Phytochemical analysis and antimicrobial activity of an endophytic Fusarium proliferatum (ACQR8), isolated from a folk medicinal plant Cissus quadrangularis L. South African Journal of Botany, 140, 87–94. doi:10.1016/j.sajb.2021.03.004
[17] Zhang., Sun., Xu. (2016). Antimicrobi Activity Of Endophytic Fungus Fusarium Sp. Isolated From Medicinal Honeysuckle Plant, 25-30. doi : 10.2298/ABS140401004Z
[18] Sari, N. K. Y., Kawuri, R., Parwanayoni, N. M. S. (2017). Aktivitas Antibakteri Fungi Endofit dari Rimpang Jahe Gajah (Zingiber officinale var. Roscoe) terhadap Methicillin Resistant Staphylococcus aureus (MRSA), Metamorfosa: Journal of Biological Sciences. doi: https://doi.org/10.24843/metamorfosa.2020.v07.i02.p11.
[19] Kyekyeku, J. O., Kusari, S., Adosraku, R. K., Bullach, A., Golz, C., Strohmann, C., Spiteller, M. (2017). Antibacterial secondary metabolites from an endophytic fungus, Fusarium solani JK10. Fitoterapia, 119, 108–114. doi:10.1016/j.fitote.2017.04.007
[20] Deshmukh, R., Mathew, A., Purohit, H. J. (2014). Characterization of antibacterial activity of bikaverin from Fusarium sp. HKF15. Journal of Bioscience and Bioengineering, 117(4), 443–448. doi:10.1016/j.jbiosc.2013.09.017
[21] Liu, P., Zhang, D., Shi, R., Yang, Z., Zhao, F., Tian, Y. (2019). Antimicrobial potential of endophytic fungi from Astragalus chinensis. 3 Biotech, 9(11). doi:10.1007/s13205-019-1948-5
[22] Zhang, P., Yuan, X.-L., Du, Y., Zhang, H.-B., Shen, G.-M., Zhang, Z.-F., xu, kuo. (2019). Angularly Prenylated Indole Alkaloids with Antimicrobial and Insecticidal Activities from an Endophytic Fungus Fusarium sambucinum TE-6L. Journal of Agricultural and Food Chemistry. doi:10.1021/acs.jafc.9b05827
[23] Toghueo, R. M. K. (2019). Bioprospecting endophytic fungi from Fusarium genus as sources of bioactive metabolites. Mycology, 11(1), 1–21. doi:10.1080/21501203.2019.1645053
[25] Grijseels, S., Nielsen, J. C., Nielsen, J., Larsen, T. O., Frisvad, J. C., Nielsen, K. F., Workman, M. (2017). Physiological characterization of secondary metabolite producing Penicillium cell factories. Fungal Biology and Biotechnology, 4(1). doi:10.1186/s40694-017-0036-z
[26] Tejesvi, M. V., Segura, D. R., Schnorr, K. M., Sandvang, D., Mattila, S., Olsen, P. B., Pirttilä, A. M. (2013). An antimicrobial peptide from endophytic Fusarium tricinctum of Rhododendron tomentosum Harmaja. Fungal Diversity, 60(1), 153–159. doi:10.1007/s13225-013-0227-8.
[27] Othman, L., Sleiman, A., Abdel-Massih, R. M. (2019). Antimicrobial Activity of Polyphenols and Alkaloids in Middle Eastern Plants. Frontiers in Microbiology, 10. doi:10.3389/fmicb.2019.00911
[28] Anisha, C., Radhakrishnan, E. K. (2017). Metabolite analysis of endophytic fungi from cultivars of Zingiber officinale Rosc. identifies myriad of bioactive compounds including tyrosol. 3 Biotech, 7(2). doi:10.1007/s13205-017-0768-8
[29] Ratnaweera, P. B., de Silva, E. D., Williams, D. E., Andersen, R. J. (2015). Antimicrobial activities of endophytic fungi obtained from the arid zone invasive plant Opuntia dillenii and the isolation of equisetin, from endophytic Fusarium sp. BMC Complementary and Alternative Medicine, 15(1). doi:10.1186/s12906-015-0722-4
[30] Liu, X.-B., Zheng, N., Liang, L.-Q., Zhao, D.-M., Qin, Y.-Y., Li, J., Yang, R.-Y. (2019). Secondary Metabolites from the Endophytic Fungus Fusarium equiseti and Their Antibacterial Activities. Chemistry of Natural Compounds. doi:10.1007/s10600-019-02915-0
[31] Ratnaweera, P. B., de Silva, E. D., Williams, D. E., Andersen, R. J. (2015). Antimicrobial activities of endophytic fungi obtained from the arid zone invasive plant Opuntia dillenii and the isolation of equisetin, from endophytic Fusarium sp. BMC Complementary and Alternative Medicine, 15(1). doi:10.1186/s12906-015-0722-4
[32] Tejesvi, M. V., Segura, D. R., Schnorr, K. M., Sandvang, D., Mattila, S., Olsen, P. B., Pirttilä, A. M. (2013). An antimicrobial peptide from endophytic Fusarium tricinctum of Rhododendron tomentosum Harmaja. Fungal Diversity, 60(1), 153–159. doi:10.1007/s13225-013-0227-8
[33] Ibrahim, S. R. M., Elkhayat, E. S., Mohamed, G. A. A., Fat’hi, S. M., Ross, S. A. (2016). Fusarithioamide A, a new antimicrobial and cytotoxic benzamide derivative from the endophytic fungus Fusarium chlamydosporium. Biochemical and Biophysical Research Communications, 479(2), 211–216. doi:10.1016/j.bbrc.2016.09.041
[34] Breijyeh, Z., Jubeh, B., and Karaman, R. (2020). Resistance of Gram-Negative Bacteria to Current Antibacterial Agents and Approaches to Resolve It, Molecules, vol. 25, no. 6. doi: https://doi.org/10.3390/molecules25061340.
[35] Zhang, P., Yuan, X.-L., Du, Y., Zhang, H.-B., Shen, G.-M., Zhang, Z.-F., xu, kuo. (2019). Angularly Prenylated Indole Alkaloids with Antimicrobial and Insecticidal Activities from an Endophytic Fungus Fusarium sambucinum TE-6L. Journal of Agricultural and Food Chemistry. doi:10.1021/acs.jafc.9b05827
[36] Abdul, J.A., Posangi, J., Wowor, P.M., dan Bara, R.A. (2020), Uji Efek Daya Hambat Jamur Endofit Rimpang Jahe (Zingiber officinale Rosc) terhadap Bakteri Staphylococcus aureus dan Escherichia coli, Jurnal Biomedik:JBM, 12:88.
[37] Akanbi, O.E., Njom, H.A., Fri, J., Otigbu, A.C., and Clarke, A.M. (2017), Antimicrobial Susceptibility of Staphylococcus aureus Isolated from Recreational Waters and Beach Sand in Eastern Cape Province of South Africa, International Journal of Environmental Research and Public Health,14:1–15.
[38] Ariantari, N.P., Frank, M., Gao, Y., Stuhldreier, F., Kiffe-Delf, A.L., Hartmann, R. (2021). Fusaristatins D–F and (7S,8R)-(−)-chlamydospordiol from Fusarium sp. BZCB-CA, an Endophyte of Bothriospermum chinense, Tetrahedron, 85.
[39] Bills, G.F. and Gloer, J.B. (2017). Biologically Active Secondary Metabolites from the Fungi, The Fungal Kingdom, 1087–1119.
[40] Caesar, L.K. and Cech, N.B. (2019). Synergy and Antagonism in Natural Product Extracts: When 1 + 1 Does Not Equal 2, Natural Product Reports, 36:869– 888.
[41] Cao, D., Sun, P., Bhowmick, S., Wei, Y., Guo, B., Wei, Y. (2021). Secondary Metabolites of Endophytic Fungi Isolated from Huperzia serrata, Fitoterapia, 155:104970.
[42] Lacerda, Í.C. dos S., Polonio, J.C., and Golias, H.C. (2022). Endophytic Fungi as a Source of Antiviral Compounds – A Review, Chemistry and Biodiversity, 19.
[43] Li, M., Yu, R., Bai, X., Wang, H., and Zhang, H. (2020). Fusarium: A Treasure Trove of Bioactive Secondary Metabolites, Natural Product Reports, 37:1568–1588.
[44] Liu, D., Li, X.M., Li, C.S., and Wang, B.G. (2013). Sesterterpenes and 2H-pyran-2- ones (=α-pyrones) from the Mangrove-Derived Endophytic Fungus Fusarium proliferatum MA-84, Helvetica Chimica Acta, 96:437–444.
[45] Wulansari, E.D., Lestari, D., dan Khoirunissa, M. (2020). Kandungan Terpenpoid dalam Daun Ara (Ficus carica L.) sebagai Agen Antibakteri terhadap Bakteri Methicillin-Resistant Staphylococcus aureus, Pharmacon, 9:219-225.
[46] Jia P. M., Alyssa S. Collanto, Rolly G. Fuentes. (2017). Antibacterial Activity of Endophytic Fungi Isolated from the Barkof Cinnamomum mercadoi. doi : 10.5530/pj.2017.3.69.
[47] Praptiwi, P., Palupi, K. D., Fathoni, A., Wulansari, D., Ilyas, M., and Agusta, A. (2016). Evaluation of Antibacterial and Antioxidant Activity of Extracts of Endophytic Fungi Isolated from Indonesian Zingiberaceous Plants, Nusantara Bioscience, vol. 8, no. 2, pp. 306–311. doi: https://doi.org/10.13057/nusbiosci/n080228.
[48] Zhang, H., Ruan, C., Bai, X., Zhang, M., Zhu, S., Jiang, Y. (2016). Isolation and Identification of the Antimicrobial Agent Beauvericin from the EndophyticFusarium oxysporum5-19 with NMR and ESI-MS/MS. BioMed Research International, 2016, 1–4. doi:10.1155/2016/1084670
[49] Musavi, S. F., Balakrishnan, R. M. (2013). Biodiversity, Antimicrobial Potential, and Phylogenetic Placement of an Endophytic Fusarium oxysporum NFX 06 Isolated from Nothapodytes foetida. Journal of Mycology, 1–10. doi:10.1155/2013/172056
[50] Zhang, P., Yuan, X.-L., Du, Y., Zhang, H.-B., Shen, G.-M., Zhang, Z.-F., xu, kuo. (2019). Angularly Prenylated Indole Alkaloids with Antimicrobial and Insecticidal Activities from an Endophytic Fungus Fusarium sambucinum TE-6L. Journal of Agricultural and Food Chemistry. doi:10.1021/acs.jafc.9b05827
[51] Liu, X.-B., Zheng, N., Liang, L.-Q., Zhao, D.-M., Qin, Y.-Y., Li, J., Yang, R.-Y. (2019). Secondary Metabolites from the Endophytic Fungus Fusarium equiseti and Their Antibacterial Activities. Chemistry of Natural Compounds. doi:10.1007/s10600-019-02915-0
[52] Wang, Z.-F., Zhang, W., Xiao, L., Zhou, Y.-M., & Du, F.-Y. (2018). Characterization and bioactive potentials of secondary metabolites from Fusarium chlamydosporum. Natural Product Research, 1–4. doi:10.1080/14786419.2018.1508142