PENERAPAN ALGORITMA GLOWWORM SWARM OPTIMIZATION PADA MODEL GEOGRAPHICALLY WEIGHTED REGRESSION DENGAN KERNEL ADAPTIF
##plugins.pubIds.doi.readerDisplayName##
https://doi.org/10.24843/MTK.2020.v09.i01.p282
Abstrak
This study aimed to apply glowworm swarm optimization (GSO) algorithm as an alternate way to obtain optimal bandwidth in geographically weighted regression (GWR) model with adaptive kernel function. The result showed that GSO was able to obtain optimal bandwidth with lower cross validation (CV) value than the traditional way that was using k-nearest neighbor (KNN) algorithm. Unfortunately, the running time of GSO was far slower than KNN was.
##plugins.generic.usageStats.downloads##
##plugins.generic.usageStats.noStats##
Diterbitkan
2020-01-31
##submission.howToCite##
KARMANA, I GEDE HARDI et al.
PENERAPAN ALGORITMA GLOWWORM SWARM OPTIMIZATION PADA MODEL GEOGRAPHICALLY WEIGHTED REGRESSION DENGAN KERNEL ADAPTIF.
E-Jurnal Matematika, [S.l.], v. 9, n. 1, p. 79-84, jan. 2020.
ISSN 2303-1751. Tersedia pada: <https://ojs.unud.ac.id/index.php/mtk/article/view/57294>. Tanggal Akses: 16 dec. 2025
doi: https://doi.org/10.24843/MTK.2020.v09.i01.p282.
Terbitan
Bagian
Articles
##submission.license.cc.by4.footer##

This work is licensed under a Creative Commons Attribution 4.0 International License.
