PENERAPAN METODE GENERALIZED RIDGE REGRESSION DALAM MENGATASI MASALAH MULTIKOLINEARITAS

  • NI KETUT TRI UTAMI Universitas Udayana
  • I KOMANG GDE SUKARSA Universitas Udayana

Abstract

Ordinary least square is parameter estimation method for linier regression analysis by minimizing residual sum of square. In the presence of multicollinearity, estimators which are unbiased and have a minimum variance can not be generated. Multicollinearity refers to a situation where regressor variables are highly correlated. Generalized Ridge Regression is an alternative method to deal with multicollinearity problem. In Generalized Ridge Regression, different biasing parameters for each regressor variables were added to the least square equation after transform the data to the space of orthogonal regressors. The analysis showed that Generalized Ridge Regression was satisfactory to overcome multicollinearity.

Downloads

Download data is not yet available.

Author Biographies

NI KETUT TRI UTAMI, Universitas Udayana
Jurusan Matematika, Fakultas MIPA
I KOMANG GDE SUKARSA, Universitas Udayana
Jurusan Matematika, Fakultas MIPA
Published
2013-01-30
How to Cite
UTAMI, NI KETUT TRI; SUKARSA, I KOMANG GDE. PENERAPAN METODE GENERALIZED RIDGE REGRESSION DALAM MENGATASI MASALAH MULTIKOLINEARITAS. E-Jurnal Matematika, [S.l.], v. 2, n. 1, p. 54-59, jan. 2013. ISSN 2303-1751. Available at: <https://ojs.unud.ac.id/index.php/mtk/article/view/4924>. Date accessed: 21 nov. 2024. doi: https://doi.org/10.24843/MTK.2013.v02.i01.p029.

Keywords

Linear regression; parameter estimation; multicollinearity; Generalized Ridge Regression

Most read articles by the same author(s)

1 2 > >>