ESTIMASI SINTASAN PENDERITA DIABETES MELITUS: KOMPARASI KINERJA REGRESI PLS DAN LASSO

  • GEDE ARY PRABHA YOGESSWARA Udayana University
  • EKA N. KENCANA Udayana University
  • KOMANG GDE SUKARSA Udayana University

Abstract

Partial least squares (PLS) regression and least absolute shrinkage and selection operator (LASSO) are the regression analysis techniques used to overcome the problems that can not be solved by ordinary least squares (OLS). The purpose of this research is to model and compare the performance of both PLS regression and LASSO to the diabetes mellitus study data which is divided into 30 groups of data redundancy as an example of microarray data. The survival time of diabetes mellitus patients as dependent variable while age, sex, body mass index, blood pressure, and six blood serum measurements as independent variables. By using paired sample t-test of adj R2 value, the result of this research concluded that the mean of adj R2 value of PLS regression is smaller than the mean of adj R2 value of LASSO. In other words, the performance of LASSO is better than PLS regression.

Downloads

Download data is not yet available.

Author Biographies

GEDE ARY PRABHA YOGESSWARA, Udayana University

Program Studi Matematika, Fakultas MIPA – Universitas Udayana

EKA N. KENCANA, Udayana University

Program Studi Matematika, Fakultas MIPA – Universitas Udayana

KOMANG GDE SUKARSA, Udayana University

Program Studi Matematika, Fakultas MIPA – Universitas Udayana

Published
2018-11-30
How to Cite
YOGESSWARA, GEDE ARY PRABHA; KENCANA, EKA N.; SUKARSA, KOMANG GDE. ESTIMASI SINTASAN PENDERITA DIABETES MELITUS: KOMPARASI KINERJA REGRESI PLS DAN LASSO. E-Jurnal Matematika, [S.l.], v. 7, n. 4, p. 339-345, nov. 2018. ISSN 2303-1751. Available at: <https://ojs.unud.ac.id/index.php/mtk/article/view/44221>. Date accessed: 22 jan. 2025. doi: https://doi.org/10.24843/MTK.2018.v07.i04.p223.
Section
Articles