ANALISIS KONVERGENSI METODE BEDA HINGGA DALAM MENGHAMPIRI PERSAMAAN DIFUSI

Abstract

The diffusion equation or known as heat equation is a parabolic and linear type of partial differential equation. One of the numerical method to approximate the solution of diffusion equations is Finite Difference Method (FDM). In this study, the analysis of numerical convergence of FDM to the solution of diffusion equation is discussed. The analytical solution of diffusion equation is given by the separation of variables approach. Here, the result show the convergence of rate the numerical method is approximately approach 2. This result is in a good agreement with the spatial error from Taylor expansion of spatial second derivative.

Downloads

Download data is not yet available.

Author Biographies

F. MUHAMMAD ZAIN, Universitas Telkom

Program Studi Ilmu Komputasi, Universitas Telkom

M. GARDA KHADAFI, Universitas Telkom

Program Studi Ilmu Komputasi, Universitas Telkom

P. H. GUNAWAN, Universitas Telkom

Program Studi Ilmu Komputasi, Universitas Telkom

Published
2018-02-03
How to Cite
ZAIN, F. MUHAMMAD; KHADAFI, M. GARDA; GUNAWAN, P. H.. ANALISIS KONVERGENSI METODE BEDA HINGGA DALAM MENGHAMPIRI PERSAMAAN DIFUSI. E-Jurnal Matematika, [S.l.], v. 7, n. 1, p. 1-4, feb. 2018. ISSN 2303-1751. Available at: <https://ojs.unud.ac.id/index.php/mtk/article/view/37596>. Date accessed: 25 nov. 2024. doi: https://doi.org/10.24843/MTK.2018.v07.i01.p176.
Section
Articles