Aplikasi Verifikasi Wajah untuk Absensi pada Platform Android dengan Menggunakan Algoritma Fisherface
Abstract
The face is one part of the human body which are often used in biometric recognition system for high-level differences between the faces of the other faces. Android mobile application with additional security face recognition feature will add to the security of personal privacy of a person's use of telephone / mobile in particular that based on android. Extraction is one of the characteristics of the stages through which the development of biometric facial recognition systems on attendance face recognition applications. This stage aims to extract information from the face image so that it can be used as the unique features of the face in question. In this paper face recognition feature extraction phase is done by using algorithms Fisherface. The image of the face through the training process to the alignment faces and extraction fisherface which is then matched by comparing the value euclidiannya. The trial results in this study resulted in fisherface algorithm does not affect the change in facial expression, distance and lighting after testing two hundred thirty facial image database will still be able to recognize a person's face.
Downloads
References
[1] Agustina, F. 2002 ”Implementasi dan Studi Perbandingan Metode Eigenface dan Fisherface dalamMetode Nearest Feature Line untuk Pengenalan Wajah 2 Dimensi”(Skripsi) Fakultas Ilmu Komputer, Universitas Indonesia Depok.
[2] Ardiyanto, F.2007.”Sistem Pengenalan Wajah Berbasis Metoda Fisherface” (Laporan Tugas Akhir) Program Studi Teknik Elektro.ITB.Bandung
[3] Banny Hermawan. 2004. Menguasai Java 2 & Object Oriented Programming. Andi OFSET Yogyakarta.
[4] Belhumeur, P.N., Joã, P.H dan David, J.K.1997. Eigenfaces vs. Fisherfaces: Recognition Using Class Specific Linear Projection. IEEE Trans. Pattern Anal. Machine Intell, vol. 19, pp 711-720
[5] Holla.Suhas. 2012. Android Based Mobile Application Development and its Security. International Journal of Computer Trends and Technology- volume 3 Issue 3
[6] Darma Putra. 2010. Pengolahan Citra Digital. Yogyakarta: ANDI Offset.
[7] Rickyanto, Isak. 2005. Dasar Pemrograman Berorientasi Objek dengan Java 2 (JDK 1.4). Yogyakarta: ANDI Offset.
[8] Safaat H, Nazruddin. 2011. Android Pemrograman Aplikasi Mobile Smartphone Dan Tablet PC Berbasis Android. Bandung: INFORMATIKA BANDUNG Offset.
[9] Turk, A Matthew and Alex P. Pentland. Face Recognition Using Eigenfaces. http://www.cs.ucsb.edu/~mturk/Papers/mturk-CVPR91.pdf (diakses, 14 Desember 2014)
[10] Winarno Edi & Dkk. 2011. Membuat Sendiri Aplikasi Android Untuk Pemula.. Jakarta: Elexmedia Komputindo
[11] Ming-Hsuan Yang, David J. Kriegman, and Narendra Ahuja, .Detecting Faces in Images: A Survey., IEEE Transcactions on Pattern Aanaly-sis and Machine Intelligence, Vol. 24, No. 1, January 2002.
[12] Mohsin, Waqar, Ahmed, Noman, Mar, Chung-tse., Face Detection Project, Department of Elec-trical Engineering, Stanford University, May 2003
Keywords
This work is licensed under a Creative Commons Attribution 4.0 International License