Literature Review Skema Proteksi Jaringan Distribusi Yang Terhubung Dengan Pembangkit Tersebar
Abstract
Connecting distributed generation (DG) to the distribution network faces several challenges. One of them is related to the protection sistem scheme. The coordination of the existing protection sistem is unable to work properly with DG connected. Changes in short circuit current level, bidirectional power flow, blinding protection, false trip, and auto recloser failure are the problems presented in this paper. Several researchers have developed a protection scheme to overcome this problem. This article reviews some schemes that have been proposed previously. The article to be reviewed is only for AC sistems and does not include signal processing methods due to the complexity of the implementation stage. The protection scheme under review consists of adaptive scheme, differential scheme, distance relay scheme, voltage scheme, fault current limiter (FCL) scheme, and overcurrent protection scheme. The results of the review show that the proposed scheme has not considered DG with an inverter interface. The use of expensive communication channels is still a mainstay in adaptive and differential schemes. Transient problems due to DG connection and disconnection, as well as unbalanced loading, are also encountered.
Keyword— distributed generation protection; AC microgrid; Distributed Generation/DG
Downloads
References
[2] U.S. EIA, “International Electricity Data : Electricity-Consumption,” 2022. https://www.eia.gov/international/data/world/electricity/electricity-consumption
[3] U.S. EIA, “International Electricity Data : Electricity-Generation,” 2022. https://www.eia.gov/international/data/world/electricity/electricity-generation
[4] I. P. Riasa, R. S. Hartati, I. B. G. Manuaba, and D. A. S. Santiari, “Pengaruh PLTB Sidrap Terhadap Sistem Kelistrikan Sulawesi Selatan,” Maj. Ilm. Teknol. Elektro, vol. 19, no. 1, p. 27, 2020, doi: 10.24843/mite.2020.v19i01.p04.
[5] G. Patrianaya Margayasa Wirsuyana, L. Linawati, I. Bagus Gede Manuaba, and R. Sari Hartati, “Literature Review Metode Reduksi Harmonisa Berbasis Kecerdasan Buatan pada Multilevel Inverter,” Maj. Ilm. Teknol. Elektro, vol. 21, no. 1, p. 53, 2022, doi: 10.24843/mite.2022.v21i01.p08.
[6] H. H. Zeineldin, Y. A. R. I. Mohamed, V. Khadkikar, and V. Ravikumar Pandi, “A protection coordination index for evaluating distributed generation impacts on protection for meshed distribution systems,” IEEE Trans. Smart Grid, vol. 4, no. 3, pp. 1523–1532, 2013, doi: 10.1109/TSG.2013.2263745.
[7] A. T. Moore, “DG Protection Overview ES 586b,” 2008, [Online]. Available: https://www.eng.uwo.ca/people/tsidhu/Documents/DG Protection V4.pdf
[8] A. Shobole, M. Baysal, M. Wadi, and M. R. Tur, “An adaptive protection technique for smart distribution network,” Elektron. ir Elektrotechnika, vol. 26, no. 4, pp. 46–56, 2020, doi: 10.5755/J01.EIE.26.4.25778.
[9] X. Zhang and S. P. Azad, “A Review of the Protection of Microgrids with Converter-Based Resources,” in 2020 CIGRE Canada Conference, 2020.
[10] R. Sahu, P. K. Panigrahi, and D. K. Lal, “Control and protection of hybrid smart-grid power system: A review,” in Proceedings - 2020 IEEE International Symposium on Sustainable Energy, Signal Processing and Cyber Security, iSSSC 2020, 2020, pp. 1–6. doi: 10.1109/iSSSC50941.2020.9358807.
[11] S. A. Hosseini, H. A. Abyaneh, S. H. H. Sadeghi, F. Razavi, and A. Nasiri, “An overview of microgrid protection methods and the factors involved,” Renew. Sustain. Energy Rev., vol. 64, pp. 174–186, 2016, doi: 10.1016/j.rser.2016.05.089.
[12] M. Meskin, A. Domijan, and I. Grinberg, “Impact of distributed generation on the protection systems of distribution networks: Analysis and remedies – review paper,” IET Gener. Transm. Distrib., vol. 14, no. 24, pp. 5816–5822, 2020, doi: 10.1049/iet-gtd.2019.1652.
[13] U. Shahzad, S. Kahrobaee, and S. Asgarpoor, “Protection of Distributed Generation: Challenges and Solutions,” Energy Power Eng., vol. 09, no. 10, pp. 614–653, 2017, doi: 10.4236/epe.2017.910042.
[14] A. Chandra, G. K. Singh, and V. Pant, “Protection of AC microgrid integrated with renewable energy sources – A research review and future trends,” Electric Power Systems Research, vol. 193. Elsevier Ltd, Apr. 2021. doi: 10.1016/j.epsr.2021.107036.
[15] M. Awaad, S. F. Mekhamer, and A. Y. Abdelaziz, “Design of an adaptive overcurrent protection scheme for microgrids,” Int. J. Eng. Sci. Technol., vol. 10, no. 1, pp. 1–12, Feb. 2018, doi: 10.4314/ijest.v10i1.1.
[16] L. Che, M. E. Khodayar, and M. Shahidehpour, “Adaptive Protection System for Microgrids: Protection practices of a functional microgrid system,” IEEE Electrif. Mag., vol. 2, no. 1, pp. 66–80, Mar. 2014, doi: 10.1109/MELE.2013.2297031.
[17] R. Sitharthan, M. Geethanjali, and T. Karpaga Senthil Pandy, “Adaptive protection scheme for smart microgrid with electronically coupled distributed generations,” Alexandria Eng. J., vol. 55, no. 3, pp. 2539–2550, Sep. 2016, doi: 10.1016/j.aej.2016.06.025.
[18] E. C. Piesciorovsky and N. N. Schulz, “Comparison of Programmable Logic and Setting Group Methods for adaptive overcurrent protection in microgrids,” Electr. Power Syst. Res., vol. 151, pp. 273–282, Oct. 2017, doi: 10.1016/j.epsr.2017.05.035.
[19] E. C. Piesciorovsky and N. N. Schulz, “Fuse relay adaptive overcurrent protection scheme for microgrid with distributed generators,” IET Gener. Transm. Distrib., vol. 11, no. 2, pp. 540–549, Jan. 2017, doi: 10.1049/iet-gtd.2016.1144.
[20] O. V. Gnana Swathika and S. Hemamalini, “Prims-Aided Dijkstra Algorithm for Adaptive Protection in Microgrids,” IEEE J. Emerg. Sel. Top. Power Electron., vol. 4, no. 4, pp. 1279–1286, Dec. 2016, doi: 10.1109/JESTPE.2016.2581986.
[21] F. Coffele, C. Booth, and A. Dysko, “An Adaptive Overcurrent Protection Scheme for Distribution Networks,” IEEE Trans. Power Deliv., vol. 30, no. 2, pp. 561–568, Apr. 2015, doi: 10.1109/TPWRD.2013.2294879.
[22] H. Muda and P. Jena, “Superimposed Adaptive Sequence Current Based Microgrid Protection: A New Technique,” IEEE Trans. Power Deliv., vol. 32, no. 2, pp. 757–767, Apr. 2017, doi: 10.1109/TPWRD.2016.2601921.
[23] J. Ma, X. Wang, Y. Zhang, Q. Yang, and A. G. Phadke, “A novel adaptive current protection scheme for distribution systems with distributed generation,” Int. J. Electr. Power Energy Syst., vol. 43, no. 1, pp. 1460–1466, Dec. 2012, doi: 10.1016/j.ijepes.2012.07.024.
[24] B. Hussain, S. M. Sharkh, S. Hussain, and M. A. Abusara, “An Adaptive Relaying Scheme for Fuse Saving in Distribution Networks With Distributed Generation,” IEEE Trans. Power Deliv., vol. 28, no. 2, pp. 669–677, Apr. 2013, doi: 10.1109/TPWRD.2012.2224675.
[25] P. H. Shah and B. R. Bhalja, “New adaptive digital relaying scheme to tackle recloser–fuse miscoordination during distributed generation interconnections,” IET Gener. Transm. Distrib., vol. 8, no. 4, pp. 682–688, Apr. 2014, doi: 10.1049/iet-gtd.2013.0222.
[26] M. H. Cintuglu, T. Ma, and O. A. Mohammed, “Protection of Autonomous Microgrids Using Agent-Based Distributed Communication,” IEEE Trans. Power Deliv., vol. 32, no. 1, pp. 351–360, Feb. 2017, doi: 10.1109/TPWRD.2016.2551368.
[27] Hengwei Lin, J. M. Guerrero, Chenxi Jia, Zheng-hua Tan, J. C. Vasquez, and Chengxi Liu, “Adaptive overcurrent protection for microgrids in extensive distribution systems,” in IECON 2016 - 42nd Annual Conference of the IEEE Industrial Electronics Society, Oct. 2016, pp. 4042–4047. doi: 10.1109/IECON.2016.7793091.
[28] M. N. Alam, “Adaptive Protection Coordination Scheme Using Numerical Directional Overcurrent Relays,” IEEE Trans. Ind. Informatics, vol. 15, no. 1, pp. 64–73, Jan. 2019, doi: 10.1109/TII.2018.2834474.
[29] S. F. Zarei and M. Parniani, “A Comprehensive Digital Protection Scheme for Low-Voltage Microgrids with Inverter-Based and Conventional Distributed Generations,” IEEE Trans. Power Deliv., vol. 32, no. 1, pp. 441–452, Feb. 2017, doi: 10.1109/TPWRD.2016.2566264.
[30] H. Nikkhajoei and R. H. Lasseter, “Microgrid Fault Protection Based on Symmetrical and Differential Current Components,” Power System Engineering Research Center, 2006.
[31] H. Zeineldin, E. El-saadany, and M. A. Salama, “Distributed Generation Micro-Grid Operation: Control and Protection,” in 2006 Power Systems Conference: Advanced Metering, Protection, Control, Communication, and Distributed Resources, 2006, pp. 105–111. doi: 10.1109/PSAMP.2006.285379.
[32] T. S. Ustun, C. Ozansoy, and A. Zayegh, “Differential protection of microgrids with central protection unit support,” in IEEE 2013 Tencon - Spring, Apr. 2013, pp. 15–19. doi: 10.1109/TENCONSpring.2013.6584408.
[33] A. Pathirana, A. Rajapakse, and N. Perera, “Development of a hybrid protection scheme for active distribution systems using polarities of current transients,” Electr. Power Syst. Res., vol. 152, pp. 377–389, Nov. 2017, doi: 10.1016/j.epsr.2017.07.022.
[34] S. Kar, “A comprehensive protection scheme for micro-grid using fuzzy rule base approach,” Energy Syst., vol. 8, no. 3, pp. 449–464, Aug. 2017, doi: 10.1007/s12667-016-0204-x.
[35] E. Casagrande, W. L. Woon, H. H. Zeineldin, and D. Svetinovic, “A Differential Sequence Component Protection Scheme for Microgrids With Inverter-Based Distributed Generators,” IEEE Trans. Smart Grid, vol. 5, no. 1, pp. 29–37, Jan. 2014, doi: 10.1109/TSG.2013.2251017.
[36] S. Ranjbar and S. Jamali, “Comprehensive protection of medium-voltage microgrids,” in 2014 Smart Grid Conference (SGC), Dec. 2014, pp. 1–7. doi: 10.1109/SGC.2014.7150707.
[37] A. H. Abdulwahid and S. Wang, “A new differential protection scheme for microgrid using Hilbert space based power setting and fuzzy decision processes,” in 2016 IEEE 11th Conference on Industrial Electronics and Applications (ICIEA), Jun. 2016, pp. 6–11. doi: 10.1109/ICIEA.2016.7603542.
[38] S. Kar, S. R. Samantaray, and M. D. Zadeh, “Data-Mining Model Based Intelligent Differential Microgrid Protection Scheme,” IEEE Syst. J., vol. 11, no. 2, pp. 1161–1169, Jun. 2017, doi: 10.1109/JSYST.2014.2380432.
[39] O. Dharmapandit, R. K. Patnaik, and P. K. Dash, “Detection, classification, and location of faults on grid‐connected and islanded
[40] M. Gomes, P. Coelho, and C. Moreira, “Microgrid Protection Schemes,” in Microgrids Design and Implementation, Cham: Springer International Publishing, 2019, pp. 311–336. doi: 10.1007/978-3-319-98687-6_12.
[41] B. K. Chaitanya, A. Yadav, and M. Pazoki, “An improved differential protection scheme for micro-grid using time-frequency transform,” Int. J. Electr. Power Energy Syst., vol. 111, pp. 132–143, Oct. 2019, doi: 10.1016/j.ijepes.2019.04.015.
[42] S. Afrasiabi, M. Afrasiabi, B. Parang, and M. Mohammadi, “Designing a composite deep learning based differential protection scheme of power transformers,” Appl. Soft Comput., vol. 87, p. 105975, Feb. 2020, doi: 10.1016/j.asoc.2019.105975.
[43] C. D. Prasad and M. Biswal, “Swarm intelligence-based differential protection scheme for wind integrated transmission system,” Comput. Electr. Eng., vol. 86, p. 106709, Sep. 2020, doi: 10.1016/j.compeleceng.2020.106709.
[44] C. D. Prasad, M. Biswal, and A. Y. Abdelaziz, “Adaptive differential protection scheme for wind farm integrated power network,” Electr. Power Syst. Res., vol. 187, p. 106452, Oct. 2020, doi: 10.1016/j.epsr.2020.106452.
[45] S. Mirsaeidi, D. Mat Said, M. Wazir Mustafa, M. H. Habibuddin, and M. R. Miveh, “A Comprehensive Overview of Different Protection Schemes in Micro-Grids,” Int. J. Emerg. Electr. Power Syst., vol. 14, no. 4, pp. 327–332, Jul. 2013, doi: 10.1515/ijeeps-2013-0051.
[46] X. Kang, C. E. K. Nuworklo, B. S. Tekpeti, and M. Kheshti, “Protection of micro‐grid systems: a comprehensive survey,” J. Eng., vol. 2017, no. 13, pp. 1515–1518, Jan. 2017, doi: 10.1049/joe.2017.0584.
[47] B. J. Brearley and R. R. Prabu, “A review on issues and approaches for microgrid protection,” Renew. Sustain. Energy Rev., vol. 67, pp. 988–997, Jan. 2017, doi: 10.1016/j.rser.2016.09.047.
[48] M. Dewadasa, A. Ghosh, G. Ledwich, and M. Wishart, “Fault isolation in distributed generation connected distribution networks,” IET Gener. Transm. Distrib., vol. 5, no. 10, p. 1053, 2011, doi: 10.1049/iet-gtd.2010.0735.
[49] H. Lin, C. Liu, J. M. Guerrero, and J. C. Vasquez, “Distance protection for microgrids in distribution system,” in IECON 2015 - 41st Annual Conference of the IEEE Industrial Electronics Society, Nov. 2015, pp. 000731–000736. doi: 10.1109/IECON.2015.7392186.
[50] H. F. Habib, T. Youssef, M. H. Cintuglu, and O. A. Mohammed, “Multi-Agent-Based Technique for Fault Location, Isolation, and Service Restoration,” IEEE Trans. Ind. Appl., vol. 53, no. 3, pp. 1841–1851, May 2017, doi: 10.1109/TIA.2017.2671427.
[51] A. Hooshyar and R. Iravani, “A New Directional Element for Microgrid Protection,” IEEE Trans. Smart Grid, vol. 9, no. 6, pp. 6862–6876, Nov. 2018, doi: 10.1109/TSG.2017.2727400.
[52] H. Al-Nasseri, M. A. Redfern, and R. O’Gorman, “Protecting micro-grid systems containing solid-state converter generation,” in 2005 International Conference on Future Power Systems, 2005, pp. 5 pp. – 5. doi: 10.1109/FPS.2005.204294.
[53] H. Al-Nasseri, M. A. Redfern, and F. Li, “A voltage based protection for micro-grids containing power electronic converters,” in 2006 IEEE Power Engineering Society General Meeting, 2006, p. 7 pp. doi: 10.1109/PES.2006.1709423.
[54] X. Wang, Y. Li, and Y. Yu, “Research on the relay protection system for a small laboratory-scale microgrid system,” in 2011 6th IEEE Conference on Industrial Electronics and Applications, Jun. 2011, pp. 2712–2716. doi: 10.1109/ICIEA.2011.5976056.
[55] R. Ndou, J. I. Fadiran, S. Chowdhury, and S. P. Chowdhury, “Performance comparison of voltage and frequency based loss of grid protection schemes for microgrids,” in 2013 IEEE Power & Energy Society General Meeting, 2013, pp. 1–5. doi: 10.1109/PESMG.2013.6672788.
[56] S. Ranjbar, A. R. Farsa, and S. Jamali, “Voltage‐based protection of microgrids using decision tree algorithms,” Int. Trans. Electr. Energy Syst., vol. 30, no. 4, Apr. 2020, doi: 10.1002/2050-7038.12274.
[57] P. T. Manditereza and R. C. Bansal, “Protection of microgrids using voltage-based power differential and sensitivity analysis,” Int. J. Electr. Power Energy Syst., vol. 118, p. 105756, Jun. 2020, doi: 10.1016/j.ijepes.2019.105756.
[58] L. Huchel, H. H. Zeineldin, and E. F. El-Saadany, “Protection Coordination Index Enhancement Considering Multiple DG Locations Using FCL,” IEEE Trans. Power Deliv., vol. 32, no. 1, pp. 344–350, Feb. 2017, doi: 10.1109/TPWRD.2016.2533565.
[59] A. Elmitwally, E. Gouda, and S. Eladawy, “Optimal allocation of fault current limiters for sustaining overcurrent relays coordination in a power system with distributed generation,” Alexandria Eng. J., vol. 54, no. 4, pp. 1077–1089, Dec. 2015, doi: 10.1016/j.aej.2015.06.009.
[60] T. Ghanbari and E. Farjah, “Unidirectional Fault Current Limiter: An Efficient Interface Between the Microgrid and Main Network,” IEEE Trans. Power Syst., vol. 28, no. 2, pp. 1591–1598, May 2013, doi: 10.1109/TPWRS.2012.2212728.
[61] K. Wheeler, M. Elsamahy, and S. Faried, “Use of superconducting fault current limiters for mitigation of distributed generation influences in radial distribution network fuse–recloser protection systems,” IET Gener. Transm. Distrib., vol. 11, no. 7, pp. 1605–1612, May 2017, doi: 10.1049/iet-gtd.2015.1156.
[62] H. He et al., “Application of a SFCL for Fault Ride-Through Capability Enhancement of DG in a Microgrid System and Relay Protection Coordination,” IEEE Trans. Appl. Supercond., vol. 26, no. 7, pp. 1–8, Oct. 2016, doi: 10.1109/TASC.2016.2599898.
[63] M. Ebrahimpour, B. Vahidi, and S. H. Hosseinian, “A Hybrid Superconducting Fault Current Controller for DG Networks and Microgrids,” IEEE Trans. Appl. Supercond., vol. 23, no. 5, pp. 5604306–5604306, Oct. 2013, doi: 10.1109/TASC.2013.2267776.
[64] K. Lai, M. S. Illindala, and M. A. Haj-ahmed, “Comprehensive protection strategy for an islanded microgrid using intelligent relays,” in 2015 IEEE Industry Applications Society Annual Meeting, Oct. 2015, pp. 1–11. doi: 10.1109/IAS.2015.7356952.
[65] K. O. Oureilidis and C. S. Demoulias, “A Fault Clearing Method in Converter-Dominated Microgrids With Conventional Protection Means,” IEEE Trans. Power Electron., vol. 31, no. 6, pp. 4628–4640, Jun. 2016, doi: 10.1109/TPEL.2015.2476702.
[66] A. H. A. Bakar, B. Ooi, P. Govindasamy, C. Tan, H. A. Illias, and H. Mokhlis, “Directional overcurrent and earth-fault protections for a biomass microgrid system in Malaysia,” Int. J. Electr. Power Energy Syst., vol. 55, pp. 581–591, Feb. 2014, doi: 10.1016/j.ijepes.2013.10.004.
[67] M. A. Zamani, A. Yazdani, and T. S. Sidhu, “Investigations into the operation of an existing medium-voltage distribution feeder as a microgrid,” in IET Conference on Renewable Power Generation (RPG 2011), 2011, pp. 42–42. doi: 10.1049/cp.2011.0115.
[68] A. H. Etemadi and R. Iravani, “Overcurrent and Overload Protection of Directly Voltage-Controlled Distributed Resources in a Microgrid,” IEEE Trans. Ind. Electron., vol. 60, no. 12, pp. 5629–5638, Dec. 2013, doi: 10.1109/TIE.2012.2229680.
[69] D. M. Bui, K.-Y. Lien, S.-L. Chen, Y.-C. Lu, C.-M. Chan, and Y.-R. Chang, “Investigate dynamic and transient characteristics of microgrid operation and develop a fast-scalable-adaptable algorithm for fault protection system,” Electr. Power Syst. Res., vol. 120, pp. 214–233, Mar. 2015, doi: 10.1016/j.epsr.2014.04.003.
[70] Z. Akhtar and M. A. Saqib, “Microgrids formed by renewable energy integration into power grids pose electrical protection challenges,” Renew. Energy, vol. 99, pp. 148–157, Dec. 2016, doi: 10.1016/j.renene.2016.06.053.
[71] S. Mirsaeidi, D. M. Said, M. W. Mustafa, M. H. Habibuddin, and K. Ghaffari, “A Protection Strategy for Micro-Grids Based on Positive-Sequence Impedance,” Distrib. Gener. Altern. Energy J., vol. 31, no. 3, pp. 7–32, Jun. 2016, doi: 10.1080/21563306.2016.11744002.
[72] A. Hussain, M. Aslam, and S. M. Arif, “N-version programming-based protection scheme for microgrids: A multi-agent system based approach,” Sustain. Energy, Grids Networks, vol. 6, pp. 35–45, Jun. 2016, doi: 10.1016/j.segan.2016.02.001.
[73] X. Lin, R. Zhang, N. Tong, X. Li, M. Li, and D. Yang, “Regional protection scheme designed for low-voltage micro-grids,” Int. J. Electr. Power Energy Syst., vol. 64, pp. 526–535, Jan. 2015, doi: 10.1016/j.ijepes.2014.07.050.
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
This work is licensed under a Creative Commons Attribution 4.0 International License