Monitoring Tegangan dan Arus Pada Panel Surya Menggunakan IoT
Abstract
Solar panel is a potential technology for harvesting solar energy, especially in tropical countries like Indonesia. Currently, energy harvesting technology based on solar photovoltaic (PV) has reached an advanced stage and is widely applied to various applications. On the other hand, the massive number of PV-based solar power plants (PLTS) makes the maintenance process even more difficult. Therefore, we need a solution that can streamline this maintenance process. With the use Internet of Things (IoT) Technology, we can monitor the health conditions of PLTS online and real-time. This study uses the NodeMCU ESP8266 microcontroller and the INA219 sensor to monitor current and voltage at PLTS system, then the data will be sent via the internet to the Blynk application. The research method used is to collect data every 10 minutes in the morning, afternoon, and evening. The results showed that the use of the NodeMCU ESP8266 microcontroller and the Blynk IoT platform for solar panel current and voltage monitoring applications can reduce production costs with optimal and stable measurement and monitoring results.
Keyword— Blynk; Internet of Things; Monitoring; NodeMCU; Solar Panel.
Downloads
References
[2] I. Z. T. Dewi, M. F. Ulinuha, W. A. Mustofa, A. Kurniawan, and F. A. Rakhmadi, “Smart Farming: Sistem Tanaman Hidroponik Terintegrasi IoT MQTT Panel Berbasis Android,” J. Keteknikan Pertan. Trop. dan Biosist., vol. 9, no. 1, pp. 71–78, 2021, [Online]. Available: https://www.jkptb.ub.ac.id/index.php/jkptb/article/view/583.
[3] C. L. Aritonang, M. Maison, and Y. R. Hais, “Sistem Monitoring Tegangan, Arus, dan Intensitas Cahaya pada Panel Surya dengan Thingspeak,” J. Eng., vol. 2, no. 1, pp. 11–24, Jan. 2020, doi: 10.22437/jurnalengineering.v2i1.8641.
[4] M. Fernando, L. Jasa, and R. S. Hartati, “Monitoring System Kecepatan dan Arah Angin Berbasis Internet of Things (IoT) Menggunakan Raspberry Pi 3,” Maj. Ilm. Teknol. Elektro, vol. 21, no. 1, p. 135, 2022, doi: 10.24843/mite.2022.v21i01.p18.
[5] I. W. B. Saputra, A. I. Weking, and L. Jasa, “Rancang BangunPemodelan Pembangkit Listrik Tenaga Mikro Hidro (PLTMH) Menggunakan Kincir Overshot Wheel,” Maj. Ilm. Teknol. Elektro, vol. 16, no. 2, pp. 48–54, 2017.
[6] G. I. Setiaji, A. Sofwan, and S. Sumardi, “Perancangan Power Monitoring System Pada Panel Surya Sebagai Sumber Utama Pada Smart Open Parking Dalam Arsitektur Iot,” Transient, vol. 7, no. 3, p. 819, 2019, doi: 10.14710/transient.7.3.819-825.
[7] Y. Apriani, “Monitoring Arus dan Tegangan Pembangkit Listrik Tenaga Surya Menggunakan Internet Off Things,” JATISI (Jurnal Tek. Inform. dan Sist. Informasi), vol. 8, no. 2, pp. 889–895, 2021, doi: 10.35957/jatisi.v8i2.543.
[8] T. Sutikno, H. S. Purnama, R. A. Aprilianto, A. Jusoh, N. S. Widodo, and B. Santosa, “Modernisation of DC-DC converter topologies for solar energy harvesting applications: A review,” Indones. J. Electr. Eng. Comput. Sci., vol. 28, no. 3, pp. 1845–1872, 2022, doi: 10.11591/ijeecs.v28.i3.pp1845-1872.
[9] W. D. Sinaga and Y. Prabowo, “Monitoring Tegangan Dan Arus Yang Dihasilkan Oleh Sel Surya Berbasis Web Secara Online,” J. SKANIKA, vol. 1, no. 3, pp. 1273–1277, 2018, [Online]. Available: file:///C:/Users/Netro/AppData/Local/Mendeley Ltd./Mendeley Desktop/Downloaded/Sinaga, Prabowo - 2018 - Monitoring Tegangan Dan Arus Yang Dihasilkan Oleh Sel Surya Berbasis Web Secara Online.pdf.
[10] T. Sutikno, H. S. Purnama, N. S. Widodo, S. Padmanaban, and M. R. Sahid, “A review on non-isolated low-power DC–DC converter topologies with high output gain for solar photovoltaic system applications,” Clean Energy, vol. 6, no. 4, pp. 557–572, Aug. 2022, doi: 10.1093/ce/zkac037.
[11] M. Nurdiansyah, E. C. Sinurat, M. Bakri, and I. Ahmad, “Sistem Kendali Rotasi Matahari Pada Panel Surya Berbasis Arduino UNO,” J. Tek. dan Sist. Komput., vol. 1, no. 2, pp. 7–12, 2020, doi: 10.33365/jtikom.v1i2.14.
[12] W. Winasis, A. W. W. Nugraha, I. Rosyadi, and F. S. T. Nugroho, “Desain Sistem Monitoring Sistem Photovoltaic Berbasis Internet of Things (IoT),” J. Nas. Tek. Elektro dan Teknol. Inf., vol. 5, no. 4, pp. 328–333, 2016, doi: 10.22146/jnteti.v5i4.281.
[13] M. Toh-arlim, A. Ma’arif, and A. Anggari Nuryono, “Desain Sistem Pengukuran Parameter dan Keamanan Penerangan Jalan Umum Tenaga Surya Berbasis Internet of Thing (IoT),” Maj. Ilm. Teknol. Elektro, vol. 20, no. 2, p. 333, 2021, doi: 10.24843/mite.2021.v20i02.p18.
[14] A. Hamied, A. Mellit, M. A. Zoulid, and R. Birouk, “IoT-based experimental prototype for monitoring of photovoltaic arrays,” Proc. 2018 Int. Conf. Appl. Smart Syst. ICASS 2018, no. November, pp. 1–5, 2019, doi: 10.1109/ICASS.2018.8652014.
[15] S. R. Madeti and S. N. Singh, “Monitoring system for photovoltaic plants: A review,” Renew. Sustain. Energy Rev., vol. 67, pp. 1180–1207, 2017, doi: 10.1016/j.rser.2016.09.088.
[16] A. S. Spanias, “Solar energy management as an Internet of Things (IoT) application,” 2017 8th Int. Conf. Information, Intell. Syst. Appl. IISA 2017, vol. 2018-Janua, pp. 1–4, 2018, doi: 10.1109/IISA.2017.8316460.
[17] W. Mar Myint Aung, Y. Win, and N. Win Zaw, “Implementation of Solar Photovoltaic Data Monitoring System,” Int. J. Sci. Eng. Technol. Res., vol. 7, no. 8, pp. 2278–7798, 2018.
[18] P. M. Badave, B. Karthikeyan, S. M. Badave, S. B. Mahajan, P. Sanjeevikumar, and G. S. Gill, “Health monitoring system of solar photovoltaic panel: An internet of things application,” Lect. Notes Electr. Eng., vol. 435, no. December, pp. 347–355, 2018, doi: 10.1007/978-981-10-4286-7_34.
[19] T. Sutikno, H. S. Purnama, A. Pamungkas, A. Fadlil, I. M. Alsofyani, and M. H. Jopri, “Internet of things-based photovoltaics parameter monitoring system using NodeMCU ESP8266,” Int. J. Electr. Comput. Eng., 2021, doi: 10.11591/ijece.v11i6.pp5578-5587.
[20] Y. Cheddadi, H. Cheddadi, F. Cheddadi, F. Errahimi, and N. Es-sbai, “Design and implementation of an intelligent low-cost IoT solution for energy monitoring of photovoltaic stations,” SN Appl. Sci., vol. 2, no. 7, 2020, doi: 10.1007/s42452-020-2997-4.
[21] A. B. Pulungan and M. Delfitra, “Sistem Monitoring Real Time Pada Solar Panel Park,” JTEV (Jurnal Tek. Elektro dan Vokasional), vol. 8, no. 1, p. 137, 2022, doi: 10.24036/jtev.v8i1.116821.
[22] Tukadi, W. Widodo, M. Ruswiensari, and A. Qomar, “Monitoring Pemakaian Daya Listrik Secara Realtime Berbasis Internet Of Things,” Semin. Nas. Sains dan Teknol. Terap. VII 2019, pp. 581–586, 2019, [Online]. Available: https://ejurnal.itats.ac.id/sntekpan/article/download/659/468.
[23] A. Ma and N. R. Setiawan, “Control of DC Motor Using Integral State Feedback and Comparison with PID : Simulation and Arduino Implementation,” vol. 2, no. 5, pp. 456–461, 2021, doi: 10.18196/jrc.25122.
[24] A. Hiendro, J. T. Elektro, F. Teknik, U. Tanjungpura, and T. Pustaka, “Penerapan aplikasi blynk pada simulator photovoltaic,” [Online]. Available: file:///C:/Users/Netro/Downloads/50383-75676649693-1-PB.pdf.
[25] D. Erwanto, D. A. Widhining K., and T. Sugiarto, “Sistem Pemantauan Arus Dan Tegangan Panel Surya Berbasis Internet of Things,” Multitek Indones., vol. 14, no. 1, p. 1, 2020, doi: 10.24269/mtkind.v14i1.2195.
[26] Q. Aini, U. Rahardja, H. Madiistriyatno, and A. Fuad, “Rancang Bangun Alat Monitoring Pergerakan Objek pada Ruangan Menggunakan Modul RCWL 0516,” vol. 10, no. 1, 2018, [Online]. Available: file:///C:/Users/Netro/Downloads/13731-34871-2-PB.pdf.
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
This work is licensed under a Creative Commons Attribution 4.0 International License