Analisis Tuning Parameter PID Menggunakan Algoritma Genetika pada Pengontrolan Kecepatan Motor DC
Abstract
Abstract— The DC motors often experiences rotational speed instability due to disturbance. To overcome this, PID control can be applied to stabilize the speed. PID control is a combination of proportional, integral, and derivative controls. To achieve good performance, it is necessary to tune these parameters using several methods, such as genetic algorithm. The genetic algorithm works by forming a population of individuals that potentially can produce optimal solutions judged by the fitness value. Several parameters are used in genetic algorithms such as population size, number of generations, crossover probability, and mutation probability. This study aims to analyze the genetic algorithm method for tuning PID control parameters in controlling the rotational speed of the DC motor. The results obtained genetic algorithm parameters with population size and the number of generations of 70, crossover probability of 0.9, mutation probability of 0.4 and a fitness value of 6.261e+18. PID parameters with value of Kp = 9.4429; Ki = 19.3255 and Kd = 0.45602 and system response with rise time value of 0.1212 s, settling time of 0.2562 s, overshoot of 0.0366% and steady-state error of 0.1739%. With these PID parameters, the DC motor can follow the setpoint at constant and changing load values.
Downloads
References
[2] D. A. Barkas, G. C. Ioannidis, C. S. Psomopoulos, S. D. Kaminaris, and G. A. Vokas, “Brushed DC Motor Drives for Industrial and Automobile Applications with Emphasis on Control Techniques: A Comprehensive Review,” Electronics, vol. 9, p. 887, 2020, doi: 10.3390/electronics9060887.
[3] A. MA’ARIF, R. ISTIARNO, and SUNARDI, “Kontrol Proporsional Integral Derivatif (PID) pada Kecepatan Sudut Motor DC dengan Pemodelan Identifikasi Sistem dan Tuning,” ELKOMIKA Jurnal Teknik Energi Elektrik, Teknik Telekomunikasi, vol. 9, no. 2, pp. 374–388, 2021, doi: 10.26760/elkomika.v9i2.374.
[4] A. Budiyanto and A. Intan Ekaputri Supriyo, “PERBANDINGAN METODE PID, MPC, DAN LQR PADA SISTEM PEMANAS AIR BOTTLE WASHER BERBASIS MATLAB,” AJIE - Asian Journal of Innovation and Entrepreneurship, vol. 05, no. 03, pp. 35–43, 2020.
[5] Z. Peng, “PID Control of Temperature and Humidity in Granary Based on Improved Genetic Algorithm,” in 2019 IEEE International Conference on Power, Intelligent Computing and Systems (ICPICS), 2019, pp. 428–432.
[6] S. K. Pandey, C. Bera, and S. S. Dwivedi, “Design of robust PID controller for DC Motor using TLBO algorithm,” in 2020 IEEE International Conference on Advances and Developments in Electrical and Electronics Engineering (ICADEE), 2020, pp. 1–4. doi: 10.1109/ICADEE51157.2020.9368952.
[7] M. Irhas, Iftitah, and S. Asyiqah Azizah Ilham, “Penggunaan Kontrol PID dengan Berbagai Metode untuk Analisis Pengaturan Kecepatan Motor DC,” Jurnal Fisika dan Terapannya, vol. 7, no. 1, pp. 78–86, 2020.
[8] A. Ma’rifat, H. Nabila, and O. Wahyunggoro, “Application of Intelligent Search Algorithms in Proportional-Integral- Derivative Control of Direct-Current Motor System Application of Intelligent Search Algorithms in Proportional- Integral-Derivative Control of Direct-Current Motor System,” in Journal of Physics: Conference Series, 2019, vol. 1373, pp. 1–10. doi: 10.1088/1742-6596/1373/1/012039.
[9] M. Ünal, A. Ak, V. Topuz, and H. Erdal, Optimization of PID Controllers Using Ant Colony and Genetic Algorithms. Springer International Publishing: Berlin/Heidelberg, Germany, 2013. doi: 10.1007/978-3-642-32900-5.
[10] Y. Arkeman, K. B. Seminar, and H. Gunawan, “Algoritma Genetika,” in ALGORTIMA GENETIKA Teori dan Aplikasinya untuk Bisnis dan Industri, Bogor: PT Penerbit IPB Press, 2012, pp. 13–30.
[11] S. Tiwari, A. Bhatt, A. C. Unni, J. G. Singh, and W. Ongsakul, “Control of DC Motor Using Genetic Algorithm Based PID Controller,” Proceedings of the Conference on the Industrial and Commercial Use of Energy, no. October, 2018, doi: 10.23919/ICUE-GESD.2018.8635662.
[12] Z. Abidin and E. Ihsanto, “Perancangan Kontroler PID Level Deaerator Dan Kondensor Pada Steam Power Plant Berbasis Algoritma Genetika,” Jurnal Teknologi Elektro, vol. 12, no. 3, pp. 153–159, 2021, doi: 10.22441/jte.2021.v12i3.009.
[13] E. L. Talakua, Y. A. K. Utama, and I. Andriyanto, “Optimasi Kontrol PID untuk Kendali Kecepatan Motor DC Menggunakan Metode Metaheuristik,” Seminar Nasional Ilmu Terapan, pp. 1–8, 2020.
[14] A. A. M. Zahir, S. S. N. Alhady, W. A. F. W. Othman, and M. F. Ahmad, “Genetic Algorithm Optimization of PID Controller for Brushed DC Motor,” in Intelligent Manufacturing & Mechatronics, Lecture Notes in Mechanical Engineering, Springer Nature Singapore, 2018, pp. 427–437. doi: 10.1007/978-981-10-8788-2_38.
[15] E. W. Suseno and A. Ma’rifat, “Tuning of PID Controller Parameters with Genetic Algorithm Method on DC Motor,” International Journal of Robotics and Control Systems, vol. 1, no. 1, pp. 41–53, 2021, doi: 10.31763/ijrcs.v1i1.249.
[16] J. Beneoluchi, A. Noraziah, and A. Eunice, “A new fitness function for tuning parameters of Peripheral Integral Derivative Controllers,” ICT Express, no. xxxx, pp. 1–5, 2021, doi: 10.1016/j.icte.2021.10.006.
[17] H. Sutrisno, Suryono, and P. H. Hastungkoro, Mengenal Motor Listrik Arus Searah, 1st ed. Klaten: Saka Mitra Kompetensi, 2019.
[18] B. Siswojo, ELEKTRONIKA KONTROL, 1st ed. Malang: UB Press, 2017.
[19] Fahmizal, F. Fathuddin, and R. Susanto, “Identifikasi Sistem Motor DC dan Kendali Linear Quadratic Regulator Berbasis Arduino-Simulink Matlab,” Majalah Ilmiah Teknologi Elektro, vol. 17, no. 2, 2018.
[20] A. H. Rahardjo and W. B. Mursanto, Bahan Ajar Sistem Kendali. POLITEKNIK NEGERI BANDUNG, 2020.
[21] C. P. R. Tuuk, V. C. Poekoel, and J. Litouw, “Implementasi Pengendali PID Untuk Kestabilan Posisi Terbang Wahana Tanpa Awak,” J. Tek. Elektro dan Komput., vol. 7, no. 1, pp. 53–62, 2018.
[22] G. A. Salamena and V. Salamena, “Analisis Penentuan Konstanta Pengendali PID Menggunakan Garis Singgung Metode Ziegler-Nichols I pada Titik Koordinat Kurva Tanggapan Keluaran Plant,” JURNAL SIMETRIK, vol. 10, no. 2, pp. 333–343, 2020.
[23] Z. Zukhri, ALGORITMA GENETIKA Metode Komputasi Evolusioner untuk Menyelesaikan Masalah Optimasi, 1st ed. Yogyakarta: ANDI, 2014.
[24] T. H. Fratiwi, M. Sudarma, and N. Pramaita, “Sistem Klasifikasi Musik Gamelan Angklung Bali Terhadap Suasana Hati Menggunakan Algoritma K-Nearest Neighbor Berbasis Algoritma Genetika,” Majalah Ilmiah Teknologi Elektro, vol. 20, no. 2, pp. 265–272, 2021.
[25] B. Y. Suprapto, A. Azmi, F. Nora, and S. Dwijayanti, “Penalaan Parameter Pengendali PID untuk Pengendalian Kecepatan Motor Arus Searah Menggunakan Metode Algoritma Genetika dan Jaringan Syaraf Tiruan,” Jurnal Riset Sains dan Teknologi, vol. 4, no. 1, pp. 15–23, 2020, doi: 10.30595/ jrst.v4i1.5050.
[26] “Motor Torque Calculator, Full Load Torque of a Motor.” http://www.electricalclassroom.com/full-load-motor (accessed Jan. 24, 2022).
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
This work is licensed under a Creative Commons Attribution 4.0 International License