Perbandingan Face Recognition dan QR Code Dalam Sistem Absensi Menggunakan Geolocation Berbasis Mobile

  • I Gusti Ngurah Gede Agung Suniantara Universitas Udayana
  • Linawati Linawati Universitas Udayana
  • Ida Bagus Gede Manuaba Universitas Udayana
##plugins.pubIds.doi.readerDisplayName## https://doi.org/10.24843/MITE.2022.v21i01.P11

Abstrak

Abstract— The development of increasingly sophisticated technology makes mobile devices become main alternative in managing life's affairs. Mobile device that offers services and computing is a smartphone. The sophistication of smartphone technology can be used to process attendance. Attendance system is a system that can record presence of each user, attendance system can be processed using several types of attendance including conventional attendance using a signature and digital attendance using Face Recognition and QR code. Processing attendance system, the geolocation feature can be used to find location. This study aims to explain and determine the best digital attendance method between Face Recognition and QR code using geolocation. Based on the explanation of previous research and comparing the Face Recognition and QR code methods in processing the attendance system, the results obtained that the QR code method is the best method for digital attendance because it has high accuracy and is easier to implement.


Key Words— Attendance System, Mobile Device, Geolocation, Face Recognition, QR code

##plugins.generic.usageStats.downloads##

##plugins.generic.usageStats.noStats##

Referensi

[1] H. Nurwarsito and N. Savitri, “Development of Mobile Applications for Posyandu Administration Services Using Google Maps API Geolocation Tagging,” 3rd Int. Conf. Sustain. Inf. Eng. Technol. SIET 2018 - Proc., pp. 168–173, 2018, doi: 10.1109/SIET.2018.8693170.
[2] J. A. J. Et al., “Tracing Students Attendance During Covid-19 Pandemic by Applying Location Detection Technology,” Psychol. Educ. J., vol. 58, no. 1, pp. 5441–5446, 2021, doi: 10.17762/pae.v58i1.2159.
[3] G. W. Wiriasto, R. W. S. Aji, and D. F. Budiman, “Design and Development of Attendance System Application Using Android-Based Flutter,” Proceeding - 2020 3rd Int. Conf. Vocat. Educ. Electr. Eng. Strength. Framew. Soc. 5.0 through Innov. Educ. Electr. Eng. Informatics Eng. ICVEE 2020, pp. 1–6, 2020, doi: 10.1109/ICVEE50212.2020.9243190.
[4] A. Rahmatulloh, R. Rianto, and M. Q. Shihab, “Point Clipping Algorithm on Employee Presence Application for Geolocation of Employee Position,” Kinet. Game Technol. Inf. Syst. Comput. Network, Comput. Electron. Control, vol. 4, no. 3, pp. 345–356, 2019, doi: 10.22219/kinetik.v4i4.796.
[5] A. S. Dewi and A. Amiruddin, “A User Authentication Scheme Using Real-Time Location, QR-Code, and One Time Password: A Preliminary Work,” Proc. - 2nd 2018 Int. Conf. Electr. Eng. Informatics, ICELTICs 2018, pp. 67–71, 2018, doi: 10.1109/ICELTICS.2018.8548786.
[6] Z. An, W. Deng, J. Hu, Y. Zhong, and Y. Zhao, “APA: Adaptive Pose Alignment for Pose-Invariant Face Recognition,” IEEE Access, vol. 7, no. c, pp. 14653–14670, 2019, doi: 10.1109/ACCESS.2019.2894162.
[7] J. Neves and H. Proenca, “‘A leopard cannot change its spots’: Improving Face Recognition using 3D-based caricatures,” IEEE Trans. Inf. Forensics Secur., vol. 14, no. 1, pp. 151–161, 2019, doi: 10.1109/TIFS.2018.2846617.
[8] J. Y. Choi and B. Lee, “Ensemble of Deep Convolutional Neural Networks with Gabor Face Representations for Face Recognition,” IEEE Trans. Image Process., vol. 29, no. c, pp. 3270–3281, 2020, doi: 10.1109/TIP.2019.2958404.
[9] A. Sepas-Moghaddam, A. Etemad, F. Pereira, and P. L. Correia, “CapsField: Light Field-Based Face and Expression Recognition in the Wild Using Capsule Routing,” IEEE Trans. Image Process., vol. 30, pp. 2627–2642, 2021, doi: 10.1109/TIP.2021.3054476.
[10] N. Hermanto, Nurfaizah, W. M. Baihaqi, and Sarmini, “Implementation of QR code and imei on android and web-based student presence systems,” Proc. - 2018 3rd Int. Conf. Inf. Technol. Inf. Syst. Electr. Eng. ICITISEE 2018, pp. 276–280, 2018, doi: 10.1109/ICITISEE.2018.8721009.
[11] A. Chomklin, L. N. Nongkhai, and P. Padungpattanadis, “Class Attendance Recording using QR code via Smartphone,” Proc. 2019 4th Int. Conf. Inf. Technol. Encompassing Intell. Technol. Innov. Towar. New Era Hum. Life, InCIT 2019, pp. 173–178, 2019, doi: 10.1109/INCIT.2019.8912099.
[12] S. Arora, D. C. Verma, and V. A. Athavale, “A secured automated Attendance Management System implemented with Secret Sharing Algorithm,” PDGC 2020 - 2020 6th Int. Conf. Parallel, Distrib. Grid Comput., pp. 141–145, 2020, doi: 10.1109/PDGC50313.2020.9315854.
[13] A. Nuhi, A. Memeti, F. Imeri, and B. Cico, “Smart Attendance System using QR code,” 2020 9th Mediterr. Conf. Embed. Comput. MECO 2020, pp. 8–11, 2020, doi: 10.1109/MECO49872.2020.9134225.
[14] S. Mishra, C. Kumar, A. Ali, and J. Bala, “Online Attendance Monitoring System Using QR code (OAMS),” Proc. 2021 2nd Int. Conf. Intell. Eng. Manag. ICIEM 2021, pp. 379–384, 2021, doi: 10.1109/ICIEM51511.2021.9445304.
[15] J. J. S. Casunuran et al., “Quick response code attendance system with SMS location tracker,” IEEE Reg. 10 Annu. Int. Conf. Proceedings/TENCON, vol. 2020-Novem, pp. 373–378, 2020, doi: 10.1109/TENCON50793.2020.9293769.
[16] A. S. Shahab and R. Sarno, “Android application for presence recognition based on face and geofencing,” Proc. - 2020 Int. Semin. Appl. Technol. Inf. Commun. IT Challenges Sustain. Scalability, Secur. Age Digit. Disruption, iSemantic 2020, pp. 208–213, 2020, doi: 10.1109/iSemantic50169.2020.9234253.
[17] C. Engineering, S. A. Azeem, C. Engineering, C. Engineering, M. G. Veena, and C. Engineering, “A Smart Attendance System based on Machine learning,” pp. 1–7, 2019.
[18] Chandra, M. Feisal Fransditya Mulyananda, M. A. Gunawan, F. L. Gaol, and T. Oktavia, “Application of ‘face recognition’ technology for attendance management system,” J. Adv. Inf. Technol., vol. 12, no. 3, pp. 260–266, 2021, doi: 10.12720/jait.12.3.260-266.
[19] K. K. A. Viola-jones, D. Kehadiran, K. Vision, and P. Wajah, “Sistem Monitoring Kehadiran Perkuliahan Berbasis,” vol. 18, no. 1, pp. 119–126, 2019.
[20] M. Gopila and D. Prasad, “Machine learning classifier model for attendance management system,” Proc. 4th Int. Conf. IoT Soc. Mobile, Anal. Cloud, ISMAC 2020, pp. 1034–1039, 2020, doi: 10.1109/I-SMAC49090.2020.9243363.
[21] A. Saputra, M. Sudarma, and D. M. Wiharta, “Sistem Pelaporan Parkir Liar Berbasis Geolocation di Kota Denpasar,” Maj. Ilm. Teknol. Elektro, vol. 18, no. 1, p. 127, 2019, doi: 10.24843/mite.2019.v18i01.p19.
[22] N. N. Dananjaya, I. B. G. Manuaba, and L. Linawati, “Rancang Bangun Aplikasi Mobile QR Code Untuk Validasi Pajak Reklame,” Maj. Ilm. Teknol. Elektro, vol. 20, no. 1, p. 131, 2021, doi: 10.24843/mite.2021.v20i01.p15.
[23] S. Arora, D. C. Verma, and V. A. Athavale, “A secured automated Attendance Management System implemented with Secret Sharing Algorithm,” PDGC 2020 - 2020 6th Int. Conf. Parallel, Distrib. Grid Comput., pp. 141–145, 2020, doi: 10.1109/PDGC50313.2020.9315854.
[24] N. Hermanto, Nurfaizah, W. M. Baihaqi, and Sarmini, “Implementation of QR code and imei on android and web-based student presence systems,” Proc. - 2018 3rd Int. Conf. Inf. Technol. Inf. Syst. Electr. Eng. ICITISEE 2018, pp. 276–280, 2018, doi: 10.1109/ICITISEE.2018.8721009.
[25] X. Bai, F. Jiang, T. Shi, and Y. Wu, “Design of attendance system based on Face Recognition and android platform,” Proc. - 2020 Int. Conf. Comput. Network, Electron. Autom. ICCNEA 2020, pp. 117–121, 2020, doi: 10.1109/ICCNEA50255.2020.00033.
Diterbitkan
2022-07-08
##submission.howToCite##
SUNIANTARA, I Gusti Ngurah Gede Agung; LINAWATI, Linawati; MANUABA, Ida Bagus Gede. Perbandingan Face Recognition dan QR Code Dalam Sistem Absensi Menggunakan Geolocation Berbasis Mobile. Jurnal Teknologi Elektro, [S.l.], v. 21, n. 1, p. 77 - 82, july 2022. ISSN 2503-2372. Tersedia pada: <https://ojs.unud.ac.id/index.php/mite/article/view/81280>. Tanggal Akses: 04 nov. 2025 doi: https://doi.org/10.24843/MITE.2022.v21i01.P11.