Literature Review Klasifikasi Data Menggunakan Metode Cosine Similarity dan Artificial Neural Network

  • Lely Meilina universitas udayana
  • I Nyoman Satya Kumara Universitas Udayana
  • I Nyoman Setiawan Universitas Udayana

Abstract

One of the positive impacts arising from technological developments is the ease in conveying aspirations and in obtaining information very quickly. The benefits of this technological development can be felt by all sectors, including the government sector which must protect the people and the state. In improving the quality of public services, the government must implement a government based on digital information technology. Therefore, the central and regional governments have provided online-based public complaint services. To improve the quality of service, the online complaint system must run optimally. The methods that are widely used to find the similarity of the complaint text are the cosine similarity method and the Artificial Neural Network (ANN) method for classifying complaint data. This study reviews the application of the two methods to determine the level of accuracy before it can be implemented in the online complaint system. The results of the review state that the Cosine Similarity method has an accuracy rate of 71.5% and ANN has an accuracy rate of 77%. While other method have an accuracy rate of 67%. From the percentage of this values, its can be concluded use of  Cosine Similarity and ANN methods is feasible to use in classifying data in the Online Community Complaint System.

Downloads

Download data is not yet available.

References

[1] H. C. MIlkha, ”Text Mining,” 15 November 2020. [Online]. Available: https://kesehatankerja.depkes.go.id.
[2] E. Alpaydin, ”Introduction to Machine Learning Fourth Edition,” Adaptive Computation and Machine Learning series, 2020.
[3] Sugiyamto, B. Surarso och A. Sugiharto, ”Analisa Performa Metode Cosine dan Jaccard Pada Pengujian Kesamaan Dokumen,” Jurnal Masyarakat Informatika, p. Vol. 5 No 10, 2014.
[4] P. R. Sihombing och O. P. Hendarsin, ”Perbandingan Metode Artificial Neural Network (ANN) dan Support Vector Machine (SVM) untuk Klasifikasi Kinerja Perusahaan Daerah Air Minum (PDAM) di Indonesia,” Jurnal Ilmu Komputer, p. Vol. XIII No 1, 2019.
[5] R. Feldman och J. Sanger, Text Mining Hand Book, New York: Cambridge University Press, 2007.
[6] S. M. Weiss, N. Indurkhya, T. Zhang och F. J. Damerau, Predictive Methods for Analyzing Unstructured Information, New York: Springer, 2005.
[7] A. Aziz och R. Saptono, ”Implementasi Vector Space Model dalam Pembangkitan Frequently Asked Question Otomatis dan Solusi yang Relevan untuk Keluhan Pelanggan.,” Scientific Journal of Informatics, pp. Vol.2 Hal. 111-112, 2015.
[8] K. Cios och L. Kurgan, Data Mining: A Knowledge Discovery Approach, Springer, 2007.
[9] Tata, Sandeep, Patel och Jignesh, Estimating The Selectivity Of TF-IDF Based Cosine Similarity Predicates, Departement of Electrical Engineering and Computer Science University Of MichiganO’Brien, J. A., dan Marakas, G. M. Management Information Systems, 10 ed, 2007.
[10] R. Melita, V. Amrizal, H. B. Suseno och T. Dirjam, ”Penerapan Metode Term Frequency Inverse Document Frequency (TF-IDF) dan Cosine Similarity Pada Sistem Temu Kembali Informasi Untuk Mengetahui Syarah Hadits Berbasis Web (Studi Kasus: Syarah Umdatil Ahkam),” Jurnal Teknik Informatika, vol. 12 No.2, 2018.
[11] Firdaus, Pasnur och Wabdillah, ”Implementasi Cosine Similarity Untuk Peningkatan Akurasi Pengukuran Kesamaan Dokumen Pada Klasifikasi Dokumen Berita Dengan K Nearest Neighbour,” Jurnal Teknologi Informasi dan Komunikasi , Vol. 1, Nomor 1, 2019.
[12] S. W. Iriananda, M. A. Muslim och H. S. Dachlan, ”Identifikasi Kemiripan Teks Menggunakan Class Indexing Based dan Cosine Similarity,” Jurnal Ilmu Komputer dan Teknologi Informasi, Vol. %1 av %210, No.2, pp. 30-38, 2018.
[13] M. A. Budiman och G. A. V. Mastrika Giri, ”Song Recommendations Based on Artists with Cosine Similarity Algorithms and K-Nearest Neighbor,” Jurnal Elektronik Ilmu Komputer Udayana, 2019.
[14] V. Thada och D. V. Jaglan, ”Comparison of Jaccard, Dice, Cosine Similarity Coefficient To Find Best Fitness Value for Web Retrieved Documents Using Genetic Algorithm,” International Journal of Innovations in Engineering and Technology (IJIET), 2018.
[15] M. A. H. Al-Hagery, ”Google Search Filter Using Cosine Similarity Measure to Find All Relevant Documents of a Specific Research Topic,” International Journal Of Education And Information Technologies, 2016.
[16] K.-S. Lin, ”A case-based reasoning system for interior design using a new cosine similarity retrieval algorithm,” Journal of Information and Telecommunication, 2019.
[17] R. A. Purba, Suparno och Giatman, ”The optimalization of cosine similarity method in detecting similarity degree of final project by the college students,” IOP Conf. Series: Materials Science and Engineering, 2020.
[18] M. Sujasman, Diana och A. Syazili, ”IMPLEMENTASI METODE COSINE SIMILARITY UNTUK REKOMENDASI PRODUK PADA APLIKASI PENJUALAN BERBASIS MOBILE,” Bina Darma Conference on Computer Science, 2020.
[19] L. Zahrotun, ”Comparison Jaccard similarity, Cosine Similarity and Combined Both of the Data Clustering With Shared Nearest Neighbor Method,” Computer Engineering and Applications, 2016.
[20] D. Yuliana, Purwanto och C. Supriyanto, ”Klasifikasi Teks Pengaduan Masyarakat Dengan Mengguankan Algoritma Neural Network,” UPI YPTK Jurnal KomTekInfo, Vol. 1, No.3, pp. 92-116, 2019.
[21] G. Hadju, Y. Minoso, R. Lopez , M. Acosta och A. Elleithy, ”Use Of Artificial Neural Networks to Identify Fake Profiles,” IEEE Long Island Systems, Applications and Technology Conference (LISAT), 2019.
[22] F. Fathurrahman, M. M. Santoni och A. Muliawati, ”Penerapan Artificial Neural Network Untuk Klasifikasi Citra Teks Dalam Penerjemahan Bahasa Daerah,” Seminar Nasional Mahasiswa Ilmu Komputer dan Aplikasinya (SENAMIKA), 2020.
[23] H. Putra och N. U. Walmi, ”Penerapan Prediksi Produksi Padi Menggunakan Artificial Neural Network Algoritma Backpropagation,” Jurnal Nasional Teknologi dan Sistem Informasi, 2020.
[24] B. Y. Pandji, Indwiarti och A. A. Rohmawati, ”PERBANDINGAN PREDIKSI HARGA SAHAM DENGAN MODEL ARIMA DAN ARTIFICIAL NEURAL NETWORK,” Ind. Journal on Computing, 2019.
[25] N. Fitriana, R. Ghazian, S. Khoirina, T. Salsabila, V. Baby och Kariyam, ”Perbandingan metode double exponential smoothing dan artificial neural network untuk meramalkan perkembangan covid-19 di Indonesia,” Seminar Nasional Matematika dan Pendidikan Matematika, 2020.
[26] G. E. Kambey, R. Sengkey och A. Jacobus, ”Penerapan Clustering pada Aplikasi Pendeteksi Kemiripan Dokumen Teks Bahasa Indonesia,” Jurnal Teknik Informatika, 2020.
[27] C. Supriadi , H. D. Purnomo och I. Sembiring, ”Sensitivitas Sistem Pencarian Artikel Bahasa Indonesia Menggunakan Metode n-gram Dan Tanimoto Cosine,” TRANSFORMATIKA, 2020.
[28] I. F. Rozi, V. N. Wijayaningrum och N. Khozin, ”Klasifikasi Teks Laporan Masyarakat Pada Situs Lapor! Menggunakan Reccurent Neural Network,” SISTEMASI : Jurnal Sistem Informasi, Vol. 1, No.3, 2020.
[29] R. Rismanto, A. R. Syulisto och B. P. C. Agusta, ”Research Supervisor Recommendation System Based on Topic Conformity,” Modern Education and Computer Science, pp. 26-34, 2020.
[30] E. Y. Ningsih, I. Rosyadi och H. Handayani, ”Sistem Informasi Pengaduan Online Pada Masyarakat Kecamatan Kajen Kabupaten Pekalongan Berbasis Web dan Android.,” Surya Informatika, Vol. 1, No.1, 2020.
[31] A. Sofyan och S. Santosa, ”Text Mining Untuk Klasifikasi Pengaduan Pada Sistem Lapor Menggunakan Metode C4.5 Berbasis Forward Selection,” Jurnal Teknologi Informasi, Vol. 212, No.1, 2016.
[32] H. P. Hadi och T. S. Sukamto, ”Klasifikasi Jenis Laporan Masyarakat dengan K-Nearest Neighbor Algorithm,” Journal of Information System, Vol.25, No.1, 2020.
Published
2021-12-25
How to Cite
MEILINA, Lely; KUMARA, I Nyoman Satya; SETIAWAN, I Nyoman. Literature Review Klasifikasi Data Menggunakan Metode Cosine Similarity dan Artificial Neural Network. Majalah Ilmiah Teknologi Elektro, [S.l.], v. 20, n. 2, p. 307-314, dec. 2021. ISSN 2503-2372. Available at: <https://ojs.unud.ac.id/index.php/mite/article/view/74404>. Date accessed: 19 nov. 2024. doi: https://doi.org/10.24843/MITE.2021.v20i02.P15.