Analisis Sentimen untuk Mengetahui Kelemahan dan Kelebihan Pesaing Bisnis Rumah Makan Berdasarkan Komentar Positif dan Negatif di Instagram

  • Veronica Ambassador Flores Teknologi Informasi
  • Lie Jasa Magister Teknik Elektro Universitas Udayana
  • Linawati Linawati Magister Teknik Elektro Universitas Udayana

Abstract

Abstract— Formulating a marketing strategy for a pioneering or long-running restaurant business is a very important thing. Analyze the weaknesses or strengths of business competitors is one of these strategies. Identification of weaknesses and strengths can be done by taking data from comments on competitors' Instagram accounts using Text Preprocessing Techniques. Text Preprocessing is a text processing algorithm, consisting of Transform Cases, Stopword Filters, Tokenize Filters, and Stemming. Instagram is one of the most widely used social media accounts as a promotional media in Indonesia. Another method that can be used is Full Text Search, this method can analyze the patterns in comments that have been parsed for classified into positive, negative, or neutral sentiment categories. This study concludes that this sentiment analysis system can automatically recognized weaknesses (based on negative comments) and strengths (based on positive comments) based on comments on Instagram accounts owned by restaurant business competitors with an accuracy of 85% and a precision value of 79%. 

Downloads

Download data is not yet available.

References

[1] A. Y. Adom, I. K. Nyarko and G. N. K. Som, "Competitor Analysis in Strategic Management: Is it a Worthwhile Managerial Practice in Contemporary Times?," Journal of Resources Development and Management , vol. 24, 2016.
[2] I. Zulfa and E. Winarko, "Sentimen Analisis Tweet Berbahasa Indonesia dengan Deep Belief Network," IJCCS, vol. 11, no. 2, 2017.
[3] B. Gunawan, H. S. Pratiwi and E. E. Pratama, "Sistem Analisis Sentimen pada Ulasan Produk Menggunakan Metode Naive Bayes," Jurnal Edukasi dan Penelitian Informatika, vol. 4, no. 2, 2018.
[4] Napoleoncat, "Instagram users in IndonesiaNovember 2019," Napoleoncat, [Online]. Available: https://napoleoncat.com/stats/instagram-users-in-indonesia/2019/11. [Accessed 2 Desember 2019].
[5] MySQL, "Full-Text Search Functions," MySQL, [Online]. Available: https://dev.mysql.com/doc/refman/8.0/en/fulltext-search.html. [Accessed 28 November 2019].
[6] I. N. S. Paliwahet, I. M. Sukarsa and I. K. G. D. Putra, "Pencarian Informasi Wisata Daerah Bali menggunakan Teknologi Chatbot," LONTAR KOMPUTER, vol. 8, no. 3, pp. 144-153, December 2017.
[7] M. S. N. P. Dewa Ayu Putri Wulandari, "Pemanfaatan Big Data Media Sosial Dalam Menganalisa Kemenangan Pilkada," Majalah Ilmiah Teknologi Elektro, vol. 18, no. 1, 2019.
[8] P. S. M. Suryani, L. Linawati and K. O. Saputra, "Penggunaan Metode Naïve Bayes Classifier pada Analisis Sentimen Facebook Berbahasa Indonesia," Majalah Ilmiah Teknologi Elektro, vol. 18, no. 1, 2019.
[9] K. A. B. Permana, MadeSudarma and W. G. Ariastina, "Analisis Rating Sentimen pada Video di Media Sosial Youtube Menggunakan STRUCT-SVM," Majalah IlmiahTeknologi Elektro, vol. 18, no. 1, 2019.
[10] V. A. Kharde and S. Sonawane, "Sentiment Analysis of Twitter Data: A Survey of Techniques," International Journal of Computer Applications, vol. 139, no. 11, 2016.
[11] B. Nandi, M. Ghanti and S. Paul, "Text Based Sentiment Analysis," in Proceedings of the International Conference on Inventive Computing and Informatics, India, 2017.
[12] X. Fan, "Text Sentiment Analysis: A Review," in IEEE 4th International Conference on Computer and Communications, Beijing,, 2018.
[13] A. T. J. Harjanta, "Preprocessing Text untuk Meminimalisir Kata yang Tidak Berarti dalam Proses Text Mining," Jurnal Informatika Upgris, vol. 1, no. 11, 2015.
[14] R. Melita, V. Amrizal, H. B. Suseno and T. Dirjam, "Penerapan Metode Term Frequency Inverse Document Frequency (TF-IDF) dan Cosine Similarity pada Sistem Temu Kembali Informasi untuk Mengetahui Syarah Hadits Berbasis Web (Studi Kasus: Syarah Umdatil Ahkam)," Jurnal Teknik Informatika, vol. 11, no. 2, 2018.
[15] S. Qaiser and R. Ali, "Text Mining: Use of TF-IDF to Examine the Relevance of Words to Documents," International Journal of Computer Applications, vol. 181, no. 1, 2018.
[16] D. Wahyuningsih and S. E. T. Sami, "Pengembangan Smartphone Book dengan Metode Pattern Matching," Jurnal Ilmiah KOMPUTASI, vol. 16, no. 2, 2017.
Published
2020-10-15
How to Cite
FLORES, Veronica Ambassador; JASA, Lie; LINAWATI, Linawati. Analisis Sentimen untuk Mengetahui Kelemahan dan Kelebihan Pesaing Bisnis Rumah Makan Berdasarkan Komentar Positif dan Negatif di Instagram. Majalah Ilmiah Teknologi Elektro, [S.l.], v. 19, n. 1, p. 49-54, oct. 2020. ISSN 2503-2372. Available at: <https://ojs.unud.ac.id/index.php/mite/article/view/55291>. Date accessed: 19 nov. 2024. doi: https://doi.org/10.24843/MITE.2020.v19i01.P07.