Codec Citra Berbasis Fractal dan Entropy Coding

  • I Made Aditya Virgiawan Universitas Udayana
  • I Made Oka Widyantara
  • Rukmi Sari Hartati Universitas Udayana

Abstract

The process of describing parts of the human body, to be able to find any disease that exists in the body parts caused by bacteria and viruses is called the Medical Image. CT Scanning, MRI, X-Ray, is a medical image that is commonly found in general in the form of analog data. The amount of important information contained in medical images causes the size of the medical image file to be relatively large. The need for large data storage media and long delivery times is caused by large medical image data. This study aims to realize a fractal-based medical image codec by testing its performance on several coding entropy techniques. The analysis of this study was based on the PSNR, Image Size and Time Taken needed to compress one image. The conclusion obtained from this analysis shows that the Arithmetic method has more advantages in the field of PSNR, Compression Ratio, Size Image produced along with Time Taken in the compression process, where 15 images of 100% images are better results using the Arithmetic method than by using the Adaptive Huffman method.


Keywords — Adaptive Huffman,  Arithmetic, Codec, Fractal, Image, Medical. 

Downloads

Download data is not yet available.

References

[1] Garnita. 2016. “Kompresi Citra Medis dengan Menggunakan Discrete Wavelet Transform dengan Pengkodean Huffman dan Arithmetic”.
[2] Ari Widagdo, 2012. “Implementasi Algoritma Huffman pada Kompresi Citra”
[3] Budiman. 2012. “Kompresi Citra Medis Menggunakan Metode Wavelet”. Agri-tek Volume 14 Nomor 2
[4] Rasha Adel Ibrahim. 2015. “Fractal Image Compression”. International Journal of Advanced Research (2016), Volume 4, Issue 7, 322-326
[5] Veenadevi.S.V & A.G.Ananth. 2012. “Fractal Image Compression Using Quadtree Decomposition and Huffman Coding”. Signal & Image Processing : An International Journal (SIPIJ) Vol.3, No.2, India.
[6] Putu Ayu Indira Savitri. 2016. “Digital Medical Image Compression Algorithm Using Adaptive Huffman Coding and Graph Based Quantization Based on IWT-SVD”. Fourth International Conference on Information and Communication Technologies (ICoICT). IEEE
[7] Atef Masmoudi. 2014 “An Effiecient Adaptive Arithmetic Coding for Block-Based Lossless Image Compression Using Mixture Models”. IEEE
[8] Santi Ika Murpratiwi. 2018. “Pemilihan Algoritma Kompresi Optimal Untuk Citra Digital Bitmap”. MITE
[9] Made Oka Widyantara. 2018. “Pemampatan Citra Pas Foto Dengan Menggunakan Algoritma Kompresi Joint-Photograpic Experts Group (JPEG) dan Principal Component Analysis (PCA)”.
[10] Cahyo Hendi Prastyo. 2013. “Kompresi Citra dengan Metode Arithmatic Coding dalam Kawasan Entropy Coding”.
[11] Ketut Gede Darma Putra. 2009. “Sistem Verifikasi Biometrika Telapak Tangan dengan Metode Dimensi Fraktal dan Lacunarity”. MITE
[12] Sianipar, Rismon, H, WJ., Sri Muliani, 2013. “Kompresi Citra Digital Berbasis Wavelet Tinjauan PSNR dan Laju Bit”, Jurnal Informatika, Vol. 4, No. 2, pp. 81 –87.
[13] Shoko Nakatsuka. 2013. “An Efficient Lossless Data Compression Method based on Exponential-Golomb Coding for Biomedical Information and its Implementation using ASIP Technology”. IEEE
[14] Truncation Coding (AMBTC) dan Prediction-Error Expansion (PEE)”.
[15] Joarder, R., Crundwell, N., 2009.” Chest X-Ray in Clinical Practice”. Springer Science & Business Media. New York
Published
2019-12-25
How to Cite
VIRGIAWAN, I Made Aditya; WIDYANTARA, I Made Oka; SARI HARTATI, Rukmi. Codec Citra Berbasis Fractal dan Entropy Coding. Majalah Ilmiah Teknologi Elektro, [S.l.], v. 18, n. 3, p. 313-322, dec. 2019. ISSN 2503-2372. Available at: <https://ojs.unud.ac.id/index.php/mite/article/view/49243>. Date accessed: 19 nov. 2024. doi: https://doi.org/10.24843/MITE.2019.v18i03.P03.