Analisis Kualitas Citra Medis Terkompresi JPEG
Abstract
Basically, image compression technology is a basic step to compress images so that they can be transmitted more quickly and save storage space in storage media. This is a breakthrough that was created in 1920. This research is applied research that focuses on the application of JPEG algorithms based on the value of PSNR. This study uses X-Ray image data as input data, where the image will be searched for the optimal compression ratio of 9 compression ratios (10% -90%). A total of 10 test data were used. From the table results of system testing using test images, it can be seen that the characteristics of PSNR are able to determine the compression ratio of medical images optimally. and the higher the image compression ratio applied to the test image, the higher the quality of the reconstructed image. This can be seen in the PSNR value table, where the PSNR value increases in each compression ratio.
Downloads
References
[2] Budiani, D., Andi Kurniawan, Sri. 2018. Analisa Citra Medis Pada Pasien Stroke dengan Metode Peregangan Kontras Berbasis ImageJ. Jurnal eLektrikal, Vol: 10, No 1, Tahun 2018, hal 15-18.
[3] Lussy. 2017. “Perbaikan Kualitas Citra Medis Menggunakan Metode Difusi Nonlinear Anisotropik”. (Skripsi). Universitas Andalas
[4] Nurhayati, OD., A.. Susanto. 2008. The Applicationof a Proper SegmentationMethod In The Analysis Of Head CT Scan Images. International Joint Symposium Frontierin Biomedical Sciences: From Genes to Applications, UGM Yogyakarta.
[5] Krasmala, R., Budimansyah, A., dan Lenggana. 2017. Kompresi Citra Dengan Menggabungkan Metode Discrete Cosine Transform (DCT) dan Algoritma Huffman. JOIN, Vol: 2, No. 1 Juni 2017.
[6] Susila, Wiranto, Istofa. 2013. Karakterisasi Flat-Panel Detector Untuk Pesawat Sinar-X Digital. Jurnal Prima, Vol: 10, No. 2 November 2013.
[7] Munir, R. dkk. 2003. Metode Blind Image-Watermarking Berbasis Chaos Dalam Ranah Discrete Cosine Transform (DCT). Jurnal Ilmu Komputer dan Informasi. Vol: 3 No.2, p. 1-6.
[8] Wallace, Gregory K. 1992. The JPEG Still Picture Compression Standard. IEEE Transactions on Consumer Electronics. Vol: 38 No.1. p. 18-34.
[9] Salomon, D. 2004. Data Compression: The Complete Reference. Edisi Ketiga. Springer-Verlag New York, Inc. p. 77.
[10] Ghozali, Imam. 2016. Aplikasi Analisis Multivariate dengan Program SPSS. Semarang: Badan Penerbitan Universitas Diponegoro.
[11] Sutoyo, T., Eddy. M., Vincent, Wijanarto. 2009. Teori Pengolahan Citra Digital. Yogyakarta: Andi.
[12] Maricar, M. Azman; Widyantara, Oka. Pemampatan Citra Pas Foto dengan Menggunakan Algoritma Kompresi Joint-Photograpic Experts Group (JPEG) dan Principal Component Analysis (PCA). Majalah Ilmiah Teknologi Elektro, [S.l.], v.17, n.1, p.102-106, Mei 2018. ISSN 2503-2372.
[13] Pandapotan. 2014. Kompresi Citra JPEG Dengan Algoritma Zig Jag. Jurnal Ilmiah Media Processor, Vol: 9, No 1, Februari 2014.
[14] Santi, Widyantara. 2018. Pemilihan Algoritma Kompresi Optimal Untuk Citra Digital Bitmap. Majalah Ilmiah Teknologi Elektro, Vol: 17 No 1, Januari-April 2018.
[15] Yoanda, Weeka, dan Syefrida. Algoritma Penyisipan Frame Untuk Peningkatan Akurasi Metode Aligned Peak Signal-to-Noise Ra
tio Dalam Pengukuran Kualitas Video. Jurnal Komputer Terapan, Vol: 1, No 2 Mei 2015, hal: 45-56.
[16] Munandar, Maria, Alb, Joko. Analisa PSNR, Rasio Kompresi Warna Dan MSE Terhadap Kompresi Image Menggunakan 31 Fungsi Wavelet. Digital Information & System Conference 2011.
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
This work is licensed under a Creative Commons Attribution 4.0 International License